• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.038 seconds

3-D Model Reconstruction from Three Orthogonal Views Based on Merging Technique of RP Codes (RP 코드 합성을 기반으로 한 세 방향 영상에서의 삼차원 모델의 복원)

  • 박순용;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.106-114
    • /
    • 1994
  • A new merging technique is adopted for combining rectangular parallelepipes produced by 2-D rectangular code into more intuitive 30D volume elements. Rectangular parallelepiped codes (RP codes) can be used in volume-based representation of a three-dimensional object. We proposed more regularity-conserving 2-D rectangular coding scheme to merge rectangular cells represented by RP codes in three-dimensional space. After being constructed from modified 2-D rectangular code, 3-D RP codes are merged in the two orthogonal directions using new merging algorithm. The shape of merged 3-D object reconstructed by proposed algorithm is shown to be much closer to the original object shape than that of conventional RP codes. The storage requirement of merged object can be also reduced.

  • PDF

A Method to Compensate a Luminance Distortion of a Time-multiplexing Spatially Interlaced Stereoscopic Three-dimensional Display

  • Park, Minyoung;Choi, Hee-Jin
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.436-442
    • /
    • 2018
  • In a spatially interlaced stereoscopic (SIS) three-dimensional (3D) display to be realized by providing the observer a part of left-eye/right-eye images, a loss of information can be perceived due to the un-shown part of each image. In order to resolve that problem, an improved SIS 3D display is proposed to deliver the images without loss of information to the observer using a time-multiplexing scheme. However, that time-multiplexing SIS also has a problem of luminance distortion when the desired luminance is not shown due to an insufficient response of the liquid crystal cell. In this paper, we propose a new method by optimizing the image data to show correct luminance with minimum distortion.

Nasoethmoid orbital fracture reconstruction using a three-dimensional printing-based craniofacial plate

  • Hyun Ki, Hong;Do Gon, Kim;Dong Hun, Choi;Anna, Seo;Ho Yun, Chung
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.6
    • /
    • pp.278-281
    • /
    • 2022
  • The face is one of the most important parts of the body. Untreated facial fractures can result in deformities that can be harmful to patients. Three-dimensional (3D) printing is a rapidly evolving technology that has recently been widely applied in the medical field as it can potentially improve patient treatment. Although 3D printing technology is mostly used for craniofacial surgery, some studies have proved that it can be used to treat nasoethmoid orbital fractures. In this study, a patient-customized plate was constructed using a 3D printer and applied in a simulated surgery for the treatment of nasoethmoid orbital fracture.

Developemet of noncontact velocity tracking algorithm for 3-dimensional high speed flows using digital image processing technique (디지털 화상처리를 이용한 유동장의 비접촉 3차원 고속류 계측법의 개발)

  • 도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.259-269
    • /
    • 1999
  • A new algorithm for measuring 3-D velocity components of high speed flows were developed using a digital image processing technique. The measuring system consists of three CCD cameras an optical instrument called AOM a digital image grabber and a host computer. The images of mov-ing particles arranged spatially on a rotation plate are taken by two or three CCD cameras and are recorderd onto the image grabber or a video tape recoder. The three-dimensionl velocity com-ponents of the particles are automatically obtained by the developed algorithm In order to verify the validity of this technique three-dimensional velocity data sets obtained from a computer simu-lation of a backward facing step flow were used as test data for the algorithm. an uncertainty analysis associated with the present algorithm is systematically evaluated, The present technique is proved to be used as a tookl for the measurement of unsteady three-dimensional fluid flows.

  • PDF

PROSPECTS IN DETERMINISTIC THREE-DIMENSIONAL WHOLE-CORE TRANSPORT CALCULATIONS

  • Sanchez, Richard
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.113-150
    • /
    • 2012
  • The point we made in this paper is that, although detailed and precise three-dimensional (3D) whole-core transport calculations may be obtained in the future with massively parallel computers, they would have an application to only some of the problems of the nuclear industry, more precisely those regarding multiphysics or for methodology validation or nuclear safety calculations. On the other hand, typical design reactor cycle calculations comprising many one-point core calculations can have very strict constraints in computing time and will not directly benefit from the advances in computations in large scale computers. Consequently, in this paper we review some of the deterministic 3D transport methods which in the very near future may have potential for industrial applications and, even with low-order approximations such as a low resolution in energy, might represent an advantage as compared with present industrial methodology, for which one of the main approximations is due to power reconstruction. These methods comprise the response-matrix method and methods based on the two-dimensional (2D) method of characteristics, such as the fusion method.

3D Visualization for Extremely Dark Scenes Using Merging Reconstruction and Maximum Likelihood Estimation

  • Lee, Jaehoon;Cho, Myungjin;Lee, Min-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.102-107
    • /
    • 2021
  • In this paper, we propose a new three-dimensional (3D) photon-counting integral imaging reconstruction method using a merging reconstruction process and maximum likelihood estimation (MLE). The conventional 3D photon-counting reconstruction method extracts photons from elemental images using a Poisson random process and estimates the scene using statistical methods such as MLE. However, it can reduce the photon levels because of an average overlapping calculation. Thus, it may not visualize 3D objects in severely low light environments. In addition, it may not generate high-quality reconstructed 3D images when the number of elemental images is insufficient. To solve these problems, we propose a new 3D photon-counting merging reconstruction method using MLE. It can visualize 3D objects without photon-level loss through a proposed overlapping calculation during the reconstruction process. We confirmed the image quality of our proposed method by performing optical experiments.

THREE DIMENSIONAL LINEAR MEASUREMENT OF PROXIMAL TIBIA IN MEDIAL AND LATERAL APPROACH FOR BONE HARVESTING (경골 근위부 골채취를 위한 내측 및 외측 접근법시의 삼차원적 길이계측)

  • Nam, Woong;Park, Won-Se;Jeong, Ho-Gul;Hu, Kyung-Seok;Cha, In-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.4
    • /
    • pp.307-311
    • /
    • 2007
  • Purpose: The aim of this study was simply assessing linear measurements in the lateral and medial approach, respectively, for bone harvesting using anatomic and three-dimensional(3D) computed tomographic(CT) analyses on a dried cadaveric proximal tibia. In addition, the availability of the three-dimensional computed tomographic(3D-CT) analysis was also estimated. Materials and methods: Ten dried proximal tibia were obtained from five Korean cadavers. Four the reference points, the SM(superior-medial), IM(inferior-medial), SL(superior-lateral), and IL(inferior-lateral) were marked around the tibial tuberosity. The PM(posterior-medial) and PL(posterior-lateral) points were randomly marked at points farthest from the lateral and medial reference points, respectively, in the posterior border of the superior articular surface of both condyles. All measurements were obtained on the dried proximal tibia. After computed tomography had been performed, the three dimensional images were reconstructed using V works $4.0^{TM}$(Cybermed Inc., Seoul, Korea), and the length between the reference points were measured three dimensionally using the method described above. The error between the mean actual and mean 3D-CT measurements was calculated in order to determine the availability of the three dimensional computed tomographic analysis. Results: The length between the reference points was greatest at the IL-PM, which averaged $65.39mm{\pm}10.35$. This was followed by the SL-PM with $63.24mm{\pm}8.10$, the IM-PL with $58.09mm{\pm}10.02$, and the SM-PL with $51.99mm{\pm}9.06$. The differences between the IL-PM and SM-PL were 13.4 mm. The mean values were 55.04 mm in the medial approach and 64.32 mm in the lateral approach, and the differences between medial and lateral were 9.28 mm. The error between the mean actual and mean 3D-CT measurements was 0.31% and the standard deviation was 0.28%. Conclusion: The anatomical and three dimensional computed tomographic analysis indicates that there was only a 9.28 mm linear difference between the lateral and medial approach. This is consistent with previous studies, which showed that there was little difference between the two approaches in terms of the bone volume. In addition, the error(0.31%) and the standard deviation(0.28%) were considered low, demonstrating high accuracy of 3D-CT. Therefore it can be used in preoperative treatment planning.

THE NUMERICAL STUDY ON THE SUPERSONIC INLET FLOW FIELD WITH A BUMP (Bump가 있는 초음속 흡입구 유동장의 수치적 연구)

  • Kim S. D.;Song D. J.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.19-26
    • /
    • 2005
  • The purpose of this paper is the study on the characteristics of an inlet system with shock/boundary layer interactions by using various types of bumps which are substituted for the conventional bleeding system in supersonic inlet. in this study a comprehensive numerical analysis has been performed to understand the three-dimensional flow field including shock/boundary layer interaction and growth of turbulent boundary layer that might occur around a three-dimensional bump in a supersonic inlet. The characteristics of boundary layer seen in the current numerical simulations indicate the potential capability of a three-dimensional bump to control shock/boundary layer interaction in supersonic inlets.

IMPLEMENTATION OF ADAPTIVE WAVELET METHOD FOR ENHANCEMENT OF COMPUTATIONAL EFFICIENCY FOR THREE DIMENSIONAL EULER EQUATION (3차원 오일러 방정식의 계산 효율성 증대를 위한 Adaptive Wavelet 기법의 적용)

  • Jo, D.U.;Park, K.H.;Kang, H.M.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • The adaptive wavelet method is studied for the enhancement of computational efficiency of three-dimensional flows. For implementation of the method for three-dimensional Euler equation, wavelet decomposition process is introduced based on the previous two-dimensional adaptive wavelet method. The order of numerical accuracy of an original solver is preserved by applying modified thresholding value. In order to assess the efficiency of the proposed algorithm, the method is applied to the computation of flow field around ONERA-M6 wing in transonic regime with 4th and 6th order interpolating polynomial respectively. Through the application, it is confirmed that the three-dimensional adaptive wavelet method can reduce the computational time while conserving the numerical accuracy of an original solver.

NUMERICAL ANALYSIS OF THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS (3차원 아음속 난류 공동 유동에 대한 수치적 연구)

  • Choi, Hong-Il;Kim, Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Generally flight vehicles have many cavities such as wheel wells, bomb bays and windows on their external surfaces and the flow around these cavities makes separation, vortex, shock and expansion waves, reattachment and other complex flow phenomenon. The flow around the cavity makes abnormal and three-dimensional noise and vibration even thought the aspect ratio (L/D) is small. The cavity giving large effects to the flow might make large noise, cause structural damage or breakage, harm the aerodynamic performance and stability, or damage the sensitive devices. In this study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa-\omega$ turbulence model. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 with the W/D ratio of 2 for three-dimensional cavities. The Sound Pressure Level (SPL) analysis was done with FFT to check the dominant frequency of the cavity flow. The dominant frequencies were analyzed and compared with the results of Rossiter's formula and Ahuja& Mendoza's experimental datum.