• Title/Summary/Keyword: 3D(three-dimensional)

Search Result 4,304, Processing Time 0.036 seconds

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.

In Vivo Three-dimensional Motion Analysis of the Shoulder Joint During Internal and External Rotation at 90 Degrees of Abduction, using wide Gantry MRI.

  • Koishi, Hayato;Goto, Akira;Yoshikawa, Hideki;Sugamoto, Kazuomi
    • The Academic Congress of Korean Shoulder and Elbow Society
    • /
    • 2009.03a
    • /
    • pp.175-175
    • /
    • 2009
  • Despite its importance for the understanding of joint kinematics in vivo, there has been few studies about shoulder joints. The purpose of this study is to analyze the glenohumeral joint during internal and external rotation at 90 degrees of abduction using in vivo noninvasive motion analysis system. MRI was performed for the following seven positions from maximum internal rotation to maximum external rotation at intervals of 30 degrees. We used 3D-gradient echo sequencing (TR: 12 ms, TE: 5.8 ms, 0.8 mm-slice thickness). Our method is based on matching three-dimensional MR images by the similarity of the image intensity. We analyzed the in vivo three-dimensional motions of the glenohumeral and scapulothoracic joint during this motion. In scapla plane, the mean rotation angle of the glenohumeral join was 105.5 degrees ($SD{\pm}39.0^{\circ}$). The mean rotation angle of the scapulothracic joint was 27.5 degrees ($SD\;{\pm}\;7.7^{\circ}$). The contribution ratio is almost 3.8:1 of glenohumeral and scapulothracic joint respectively.

  • PDF

A study on the deviation angle of the rotating blade row in an axial- flow compressor (軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究)

  • 조강래;방영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1407-1414
    • /
    • 1988
  • Deviation angles are predicted by numerical calculation of three-dimensional compressible flow through the rotating blade row in axial flow compressor. Three-dimensional flow fields are analyzed by the quasi three-dimensional combination of blade-to blade surfaces and hub-to shroud stream surfaces and calculated by the finite element method in the cyclic calculation of both stream surfaces. In the blade-to blade calculations the method of boundary stream line correction is used and in the hub-to shroud calculations the loss effects due to viscous flow are included. The computational results are compared with the available experimental one. It is shown that the computational results from blade-to-blade flow calculation are correct for incompressible, compressible low subsonic and high subsonic flow at the inlet, and the loss effects on the deviation angle can be neglected in the range of the subsonic flow less than the critical Mach number for the axisymmetric flow and even for 3-D non-axisymmetric flow with loss. And it is found that the present results are better agreed with the experimental data than Lieblein's one.

A Study on the 3D Injection Mold Design Using CATIA API (CATIA API를 이용한 사출 금형의 3차원 설계에 관한 연구)

  • 박주삼;김재현;박정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.115-125
    • /
    • 2003
  • The design methodology of plastic injection molding die has been gradually moved from two-dimensional line drawings to three-dimensional solid models. The 3D design gives many benefits, a few of which are: ease of design change, data associativity from concept design to final assembly. In the paper represented is the implementation of a program which automatically generates 3D mold-bases and cooling-lines, conforming to given geometric constraints. It utilized a commercial CAD software and the related API(application program interface) libraries. We constructed a DB(database) of typical mold-bases assembled from standard parts, from which the geometry (position & dimension) of a mold-base and composed parts can be automatical]y determined by a few key parameters. Also we classified cooling lines into several typical types and constructed a DB, from which the position of cooling lines is automatically determined. The research is expected not only to simplify construction of a 3D mold-base model including cooling lines but also to reduce design efforts, by way of databases and automatized determination of geometric dimensions.

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.

Measurement of 3D Spreader Position Information using the CCD Cameras and a Laser Distance Measuring Unit

  • Lee, Jung-Jae;Nam, Gi-Gun;Lee, Bong-Ki;Lee, Jang-Myung
    • Journal of Navigation and Port Research
    • /
    • v.28 no.4
    • /
    • pp.323-331
    • /
    • 2004
  • This paper introduces a novel approach that can provide the three dimensional information about the movement of a spreader by using two CCD cameras and a laser distance measuring unit in order to derive ALS (Automatic Landing System) in the crane used at a harbor. So far a kind of 2D Laser scanner sensor or laser distance measuring units are used as comer detectors for the geometrical matching between the spreader and a container. Such systems provide only two dimensional information which is not enough for an accurate and fast ALS. In addition to this deficiency in performance, the price of the system is too high to adapt to the ALS. Therefore, to overcome these defects, we proposed a novel method to acquire the three dimensional spreader information using two CCD cameras and a laser distance measuring unit. To show the efficiency of proposed method, real experiments are performed to show the improvement of accuracy in distance measurement by fusing the sensory information of the CCD cameras and a laser distance measuring unit.

Characteristics of 3-Dimensional Integration Circuit Device (3차원 집적 회로 소자 특성)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • As a demand for the portable device requiring smaller size and better performance is in hike, reducing the size of conventionally used planar 2 dimensional integration circuit(IC) cannot be a solution for the enhancement of the semiconductor integration circuit technology due to an increase in RC delay among interconnects. To address this problem, a new technology of 3 dimensional integration circuit (3D-IC) has been developing. In this study, three-dimensional integrated device was investigated due to improve of reducing the size, interconnection problem, high system performance and functionality.

Structure and Dynamics of Dilute Two-Dimensional Ring Polymer Solutions

  • Oh, Young-Hoon;Cho, Hyun-Woo;Kim, Jeong-Min;Park, Chang-Hyun;Sung, Bong-June
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.975-979
    • /
    • 2012
  • Structure and Dynamics of dilute two-dimensional (2D) ring polymer solutions are investigated by using discontinuous molecular dynamics simulations. A ring polymer and solvent molecules are modeled as a tangent-hard disc chain and hard discs, respectively. Some of solvent molecules are confined inside the 2D ring polymer unlike in 2D linear polymer solutions or three-dimensional polymer solutions. The structure and the dynamics of the 2D ring polymers change significantly with the number ($N_{in}$) of such solvent molecules inside the 2D ring polymers. The mean-squared radius of gyration ($R^2$) increases with $N_{in}$ and scales as $R{\sim}N^{\nu}$ with the scaling exponent $\nu$ that depends on $N_{in}$. When $N_{in}$ is large enough, ${\nu}{\approx}1$, which is consistent with experiments. Meanwhile, for a small $N_{in}{\approx}0.66$ and the 2D ring polymers show unexpected structure. The diffusion coefficient (D) and the rotational relaxation time ($\tau_{rot}$) are also sensitive to $N_{in}$: D decreases and $\tau$ increases sharply with $N_{in}$. D of 2D ring polymers shows a strong size-dependency, i.e., D ~ ln(L), where L is the simulation cell dimension. But the rotational diffusion and its relaxation time ($\tau_{rot}$) are not-size dependent. More interestingly, the scaling behavior of $\tau_{rot}$ also changes with $N_{in}$; for a large $N_{in}$ $\tau_{rot}{\sim}N^{2.46}$ but for a small $N_{in}$ $\tau_{rot}{\sim}N^{1.43}$.

Comparison between Alginate Method and 3D Whole Body Scanning in Measuring Body Surface Area (알지네이트를 이용한 체표면적 측정방법과 삼차원 스캐닝에 의한 체표면적 측정방법의 비교)

  • Lee Joo-Young;Choi Jeong-Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.11
    • /
    • pp.1507-1519
    • /
    • 2005
  • The purpose of this study was to compare two methods of measuring body surface area (BSA). The BSA of Korean adults was measured using both three-dimensional (3D) scanning and an alginate method. Two males (one overweight and one lean) and one overweight female participated as subjects. The results were as follows: First, the 3D scanned BSA of all three subjects was smaller than the BSA measured using the alginate method by as much as $6-14\%$. The difference in methods was greater in the overweight participants than in the lean subject. Second, the results comparing the BSA obtained using these two methods and the BSA estimated by 10 previously developed formulas, showed that the 3D scanned BSA was the smallest among the 12 BSAs. Third, in comparing the regional differences between these two methods, the regional BSA of the lean subject (male 2) did not show any significant difference, but the overweight subjects (male 1, female 1) showed a significant difference. Forth, the biggest difference in regional BSA obtained through these two methods was in the hand, for all three subjects. The 3D scanned hand surface area was smaller than the hand surface area measured by the alginate method by as much as $24-34\%$. Fifth, in the percentage of regional BSA, there was no significant difference in these two methods. The reasons for the underestimation in the 3D scanning might be because: 1) the 3D scanner can not recognize the folding and shading of body parts, such as the finger, toe, ear, armpit, crotch and breast, 2) 3D patching and smoothing processes depend on researchers. However, the 3D scanning method is applicable to the estimation of the entire BSA, if the surface area of the hands is known, and the participant is not overweight.

Three Dimensional Volume Rendering Fusion Images Using F-18 FDG PET/CT in Evaluation of Cholangiocellular Carcinoma (F-18 FDG PET/CT로 재구성한 담관암의 3차원 영상)

  • Kong, Eun-Jung;Cho, Ihn-Ho;Chun, Kyung-Ah;Won, Kyu-Chang;Lee, Hyung-Woo;Eun, Jeong-Reul
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.81-81
    • /
    • 2008
  • A 69-year old male with cholangiocellular carcinoma (CCC) was assigned to our department for whole body PET/CT scan. $^{18}F$-FDG PET/CT images showed an intense hypermetabolic lobulating mass(SUVmax = 8.7 / size : 11.4 mm) in the right hepatic lobe with multiple metastatic lung nodules. We made three dimensional volume rendering fusion images by using advantage workstation 4.3 (GE health care) which provide quick anatomic overview and improve the planning process significantly.