• Title/Summary/Keyword: 3Cr-1Mo steel

Search Result 133, Processing Time 0.033 seconds

Study on the Embrittlement of the Mod. 9Cr-1Mo Steel Tempered at $550^{\circ}C$ (Mod. 9Cr-1Mo강에서의 $550^{\circ}C$ 부근에서 템퍼링시 발생하는 취성에 관한 연구)

  • Gu, Ji-Ho;Shin, Jong-Ho;Hur, Sung-Kang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • The modified 9Cr-1Mo steel (P91 steel) is very popular as a boiler tube material of the USC (Ultra-Supercritical) power plants. The steels were tempered in the temperature range of 400 to $650^{\circ}C$ and the mechanical tests, such as impact and hardness tersts were performed at the room temperature for the tempered steels. A drop in the impact value (embrittlement) and the hardeness increase were simultanously observed in the range of temperature between $475^{\circ}C$ and $600^{\circ}C$, particularly at $550^{\circ}C$. TEM observation shows the hardening was caused by $M_2C$, resulting in the embrittlement. And the maximum volume fraction of $M_3C$ was also observed at $550^{\circ}C$, Therefore, the embrittlement seems to be caused by both the $M_2C$ and $M_3C$.

Influence of Mo addition on the Mechanical Properties of 13Cr Martensitic Stainless Steel (13Cr마르텐사이트계 스테인리스강의 기계적성질에 미치는 Mo첨가의 영향)

  • Kim, Ki-Yeob;Jung, Byong-Ho;Kim, Mu-Gil;Park, Chan;Ahn, Yong-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.207-215
    • /
    • 1998
  • 13%Cr martensitic stainless steel was microalloyed with 0~1.5%Mo, and the mechanical properties were tested at the various heat treated conditions. Mo addition increased austenitization temperature(Ac1), and had little influence on the hardness and tensile properties at the annealed condition. The higher the austenitizing temperature, the higher the hardness and tensile strength, but Mo addition decreased those properties. The impact energy after austenitization increased with addition of Mo. The decrease of mechanical properties and increase of impact energy of Mo-alloyed steel after austenitization are thought to be caused by formation of ductile ${\delta}$-ferrite phase in the microstructure.

  • PDF

Evaluation of Microstructure and Ductile-Brittle Transition Temperature in Thermally aged 2.25Cr-1Mo Steel by Electrical Resistivity Measurement (전기비저항을 이용한 2.25Cr-1Mo 강 열화재의 미세조직 및 연성-취성천이온도 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.284-291
    • /
    • 2002
  • An attempt was made to evaluate the degree of aging degradation in thermally aged 2.25Cr-1Mo steel by electrical resistivity measurement. Artificial aging was performed to simulate the microstructural degradation in 2.25Cr-1Mo steel arising from long time exposure at $540^{\circ}C$. Microstructural parameter (amount of solid solution element), mechanical property (ductile-brittle transition temperature) and electrical resistivity were measured to investigate the mutual relationship among these parameters. Depletion of solid solution element(Mo and Cr) in matrix was detected after aging. The ductile-brittle transition temperature(DBTT) increased rapidly in the initial stage of aging and then saturated afterward. On the other hand, the electrical resistivity decreased rapidly in the beginning and then saturated in the later stage of aging.

A Study on Wear Resistance and Surface Hardening of 3%Cr-Mo-V Steel by Two-step Gas Nitriding (3%Cr-Mo-V강의 2단 가스질화처리를 통한 표면경화 및 내마모성 연구)

  • Jung, G.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.361-367
    • /
    • 2009
  • The two-step gas nitriding was adopted to increase the depth of surface hardening in 3%Cr-Mo-V steel. The two-step gas nitriding consisted of Step I; $520^{\circ}C{\times}20\;hrs$ and Step II; $550^{\circ}{\times}70\;hrs$. The layer of two-step gas nitriding showed better uniformity and deeper nitriding layer than one-step gas-nitriding layer. The maximum surface hardness showed the value of 850 Hv. The maximum depth of nitrogen permeation showed $750\;{\mu}m$ (350 Hv). X-ray diffraction analysis showed that compound layer was mainly consisted of CrN and $\varepsilon-Fe_3N$ phases. These phases were presumed contributing to surface hardening and wear resistance. However, the corrosion resistance of gas-nitrided Cr-Mo-V steel were not improved in the solution of 1 N HCl and NaOH. Therefore, it is necessary that the continuous study for improvement of corrosion resistance hereafter.

Temporal Brittleness of the Mod.9Cr-1Mo Steel (Mod.9Cr1Mo강에서 발생되는 일시적 취성현상)

  • Hur, Sung-Kang;Gu, Ji-Ho;Shin, Kee-Sam;He, Yincheng;Shin, Jong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.592-595
    • /
    • 2011
  • It is well known that modified 9Cr-1Mo steel has a low thermal expansion and high thermal conductivity with excellent high temperature properties compared to austenitic stainless steel. For these advantages, the steel is very popular for the boiler tube of thermal power plants. Normalizing is commonly utilized to obtain martensite in this steel, which shows an unusual toughness for martensite. However, some accidents related to this steel have been reported recently, opening the necessity for further study. As a particular behavior of the steel, an abrupt drop of the impact value has been identified upon tempering at 750$^{\circ}C$ for about 1 hour. It is well known that $Fe_3C$ forms during autotempering and turns to $Cr_2C$ at an early stage and then transforms to $Cr_{23}C_6$. In this study, the cause of the abrupt drop of the impact value was investigated with an impact test, microstructural observation, nanodiffraction and phase analyses using instruments such as optical and transmission electron microscopes (TEM) with an extraction carbon replica of the carbides. The analyses revealed that the $M_2C$ that formed when retained for about 1 hour at 750$^{\circ}C$ causes a drastic decrease in the mechanical properties. The sharp drop in mechanical properties, however, disappeared as the $M_2C$ transformed into $M_{23}C_6$ with longer retention.

Study on Softening Characteristics of 9Cr-1Mo Steel Weldments for High Temperature and Pressure Vessels Application (고온고압장치 적용을 위한 9Cr-1Mo강 용접부의 연화특성에 관한 연구)

  • 이영호;이규천;윤의박;김기철
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.40-53
    • /
    • 1992
  • 고온고압장치(High Temperature and Pressure Vessels)의 적용을 위한 기초연구로서 9Cr-1Mo강 용접부의 연화특성에 대하여 검토하였다. 9Cr-1Mo 강재에 Bead-on-Plate용접을 실시한 후, 용접부의 기계적 성질과 그 현미경조직관찰 및 미세경도를 측정한 결과, As-Welded 및 용접 후열처리(PWHT)등의 조건에 관계없이 용접열향부의 변태역과 템퍼링역의 경계에서 모재의 경 도보다 낮은 경도값(연화역)을 나타내었으며 이러한 원인은 결정립계(Grain boundary)에 석출 되는 탄화물의 형성에 의한 뜨임 현상임이 판명되었다.

  • PDF

Effect of Peak Temperatures on Hydrogen Attack Susceptibility in Simulated Weld Heat Affected Zone of 3Cr-1Mo-V Steel (3Cr-1Mo-V강의 재현 열영향부에서 최고가열온도가 수소침식감수성에 미치는 영향)

  • 김동진;김병훈;공병욱;김정태;권용형;박화순;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.232-232
    • /
    • 2000
  • The hydrogen attack characteristics of 3Cr-1Mo-V steel as simulated weld heat affected state were studied in this paper. The hydrogen attack susceptibility was evaluated by the ratios of Charpy impact absorbed energy at 0℃($vE_{0HA}$/$vE_{0}$) and reduction of area by tensile test ($RA_{HA}$/RA) before and after exposure to hydrogen at 600℃ under 450kgf/㎠ for 300hr. The values of $vE_{0HA}$/$vE_{0}$ and $RA_{HA}$/RA were aggravated as the peak temperature of the simulated heat affected zone(HAZ) raised. These results were due to the increase of the possession of bubbles along the grain boundaries, which were resulted in the reduction of grain boundary area to be precipitated carbides due to grain coarsening and the carbon dissolved in the martensite-austenite constituent near by the prior austenite grain boundary. The possession ratio of methane bubbles formed along prior austenite grain boundaries were increased with raising the peak temperature. (Received February 22, 2000)

Effect of Peak Temperatures on Hydrogen Attack Susceptibility in Simulated Weld Heat Affected Zone of 3Cr-1Mo-V Steel (3Cr-1Mo-V강의 재현 열영향부에서 최고가열온도가 수소침식감수성에 미치는 영향)

  • 김동진;김병훈;공병욱;김정태;권용형;박화순;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.105-111
    • /
    • 2000
  • The hydrogen attack characteristics of 3Cr-1Mo-V steel as simulated weld heat affected state were studied in this paper. The hydrogen attack susceptibility was evaluated by the ratios of Charpy impact absorbed energy at 0℃({TEX}$vE_{0} {HA}_/vE_{0}${/TEX}) and reduction of area by tensile test({TEX}$RA_{HA}/RA${/TEX}) before and after exposure to hydrogen at 600℃ under 450kgf/㎠ for 300hr. The values of {TEX}$vE_{0} {HA}_/vE_{0}${/TEX} and {TEX}$RA_{HA}/RA${/TEX} were aggravated as the peak temperature of the simulated heat affected zone(HAZ) raised. These results were due to the increase of the possession of bubbles along the grain boundaries, which were resulted in the reduction of grain boundary area to be precipitated carbides due to grain coarsening and the carbon dissolved in the martensite-austenite constituent near by the prior austenite grain boundary. The possession ratio of methane bubbles formed along prior austenite grain boundaries were increased with raising the peak temperature.

  • PDF