• Title/Summary/Keyword: 3Cr-1Mo

Search Result 314, Processing Time 0.04 seconds

A Study on Heavy Metal Concentrations in Waste Water Produced in the Casting Pickling Process at Dental Technical Laboratories (치과기공소 주조체 산세척과정에서 발생하는 폐수내 중금속 농도)

  • Jeong, Da-i;Sakong, Joon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • Objectives: This study set out to measure the heavy metal concentrations in waste water produced in the casting pickling process at dental technical laboratories and examine the actual state of its treatment. Methods:The investigator measured the concentrations of each heavy metal at 55 dental technical laboratories using an inductively coupled plasma optical emission system. Results: The annual usage of electrolytes was under 10 L in 50 (90.9%), and was 10L or more in five (9.1%) laboratories. Among the laboratories, 15 (27.3%) commissioned the treatment of waste,12 (21.8%) treated the waste with general sewage,and 28 (50.9%) treated the waste in aseptic tank. The arithmetic $mean{\pm}standard$ deviation and the geometric mean of chrome(Cr) were $75.3{\pm}50.9$ and 58.3 mg/L; those of cobalt (Co) were $112.3{\pm}106.7$ and 66.1 mg/L; those of nickel (Ni) were $62.9{\pm}83.5$ and 8.9 mg/L; those of molybdenum (Mo) were $17.1{\pm}13.4$ and 12.0 mg/L; those of iron (Fe) were $31.5{\pm}44.1$ and 6.2 mg/L; those of lead (Pb) were $0.3{\pm}0.3$ and 0.3 mg/L; those of beryllium (Be) were $3.6{\pm}3.6$ and 2.0 mg/L. The hydrogen ion concentration was under pH 2 across all the samples. Conclusions: The findings show that the dental technical laboratories were not doing well with the separation, storage, collection, and treatment of the electrolytes they discarded, and that most of the electrolytes were introduced through the general sewage or aseptic tank. The causes of this include alack of perception among the practitioners at dental technical laboratories and contracted companies avoiding collection for economic reasons. There is a need for education to improve the perceptions of waste water treatment among the practitioners at dental technical laboratories. Environment-related departments should be stricter with legal applications in the central and local governments. It is also required to provide proper management of commissioned treatment.

Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold (진공사출금형용 STS316L 금속 다공체 제조 및 기계적 특성)

  • Kim, Se Hoon;Kim, Sang Min;Noh, Sang Ho;Kim, Jin Pyeong;Shin, Jae Hyuck;Sung, Si-Young;Jin, Jin Kwang;Kim, Taean
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2015
  • In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under $45{\mu}m$ and over $180{\mu}m$, and then they were compacted with various pressures and sintered at $1210^{\circ}C$ for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to $79l/min{\cdot}cm^2$. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.

THE EFFECT OF SIZE AND SHAPE OF RETENTION ELEMENT ON COMPOSITE TO METAL BOND STRENGTH (유지요소의 크기와 형태가 간접복합레진과 금속간의 결합강도에 미치는 영향)

  • Lee, Yun-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.665-674
    • /
    • 2007
  • Purpose: The purpose of this study was to investigate the effect of sire and shape of retention element on the bond strength of indirect composite resin and metal. Material and method: The metal disk specimens, each 6mm in diameter, were cast from CrCo alloy. They were divided into 8 groups by applied retention element. retention bead group $B2\;({\phi}\;0.2mm),\;B4\;({\phi}\;0.4mm),\;B6\;({\phi}\;0.6mm),\;B8\;({\phi}\;0.8mm)$, retention crystal group C2 (0.2mm), C5 (0.5mm), C8 (0.8mm) and sandblasting group SB ($110{\mu}m\;Al_2O_3$ blasting) as control. Eighty-eight metal specimens were veneered with $TESCERA^{(R)}$ Indirect resin system. One specimen of each group was sectioned and the resin-metal bonding pattern at the interface was observed under measuring microscope. Other specimens were then tested for tensile bond strength on an Instron universal testing machine at a crosshead speed of 2mm/min. Results: 1. Compared to sandblasting, beads or crystals increased the resin-metal bond strength (P<.05). 2. 0.2mm retention crystals were most effective in improving the resin-metal bond strength (P>.05). 3. 0.2mm beads showed the highest bond strength among retention bead groups, but there was no statistically significant difference (P>.05). 4. Retention crystals tend to be higher in bond strength than retention beads due to wider surface area. 5. The larger retention element, the larger the undercut for the mechanical retention, but the gap at resin-metal interface was also increased. Conclusion: Within the limitations of this study, 0.2mm retention crystals were most effective in improving the resin-metal bond strength.

Characteristics of the Number and the Mass Concentrations and the Elemental Compositions of PM10 in Jeju Area (제주지역 PM10의 수농도 및 질량농도와 원소성분 조성 특성)

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.447-457
    • /
    • 2014
  • The number concentrations, the mass concentrations and the elemental concentrations of $PM_{10}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010. And the correlation and the factor analysis for the number, the mass and the elemental concentrations of $PM_{10}$ are performed to identify their relationships and sources. The average $PM_{10}$ number concentration is observed $246\;particles/cm^3$($35.7{\sim}1,017\;particles/cm^3$) and the average $PM_{10}$ mass concentration is shown $50.1{\mu}g/m^3$($16.7{\sim}441.4{\mu}g/m^3$) during this experimental period. The number concentrations are significantly decreased with increasing particle size, hence the concentrations for the smaller particles less than $2.5{\mu}m$($PM_{2.5}$) are contributed 99.6% to the total $PM_{10}$ number concentrations. The highest concentration of the 20 elements in $PM_{10}$ determined in this study is shown by S with a mean value of $1,497ng/m^3$ and the lowest concentration of them is found by Cd with a mean value of $0.57ng/m^3$. The elements in $PM_{10}$ are evidently classified into two group based on their concentrations: In group 1, including S>Na>Al>Fe>Ca>Mg>K, the elemental mean concentrations are higher than several hundred $ng/m^3$, on the other hand, the concentrations are lower than several ten $ng/m^3$ in group 2, including Zn>Mn>Ni>Ti>Cr>Co>Cu>Mo>Sr>Ba>V>Cd. The size-separated number concentrations are shown positively correlated with the mass concentrations in overall size ranges, although their correlation coefficients, which are monotonously increased or decreased with size range, are not high. The concentrations of the elements in group 1 are shown highly correlated with the mass concentrations, but the concentrations in group 2 are shown hardly correlated with the mass concentrations. The elements originated from natural sources have been predominantly related to the mass concentrations while the elements from anthropogenic sources have mainly affected on the number concentrations of $PM_{10}$.

Sequential Chemotherapy and Radiation Therapy for Advanced Nasopharyngeal Carcinoma (진행된 비인강암의 화학요법 및 방사선 치료)

  • Park, In-Kyu;Kim, Song-Bo;Yun, Sang-Mo;Kim, Jae-Cheol;Park, Jun-Sik
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.259-265
    • /
    • 1993
  • Between January 1985 and July 1992, 52 patients with locally advanced nasopharyngeal carcinoma were studied retrospectively for the effectiveness of sequential chemotherapy and radiation therapy. The male to female ratio was 3.3:1 with a median age of 41 years. Forty patients had squamous cell carcinoma and the remaining 12 had undifferentiated carcinoma. Seven patients had stage III disease and the remainder had stage IV disease at time of presentation. All patients were treated two courses of chemotherapy followed by radiation therapy. Chemotherapy consisted of either CVB (cisplatin, vincristine and bleomycin) or CF (cisplatin and 5-FU). Total radiation dose to the primary site ranged from 6000 cGy to 7500 cGy. Neck nodes were given booster treatment to maximum of 7000 cGy, depending on the extent of disease. Local control, overall survival and disease-free survival rates were analyzed. The complete response (CR) rate to chemotherapy was $15\%$ and the partial response (PR) rate was $46\%,$ for overall major response rate of $61\%.$ The CR rate was $87\%$ after radiation therapy. Median follow-up time was 51 months. The overall survival and disease-free survival rates at 36 months were $54\%\;and\;49\%,$ respectively. Median time to relapse was 15 months. The patterns of initial relapse in CR patients was as follows: locoregional failure only, 12 patients; distant metastasis only,11: both,2. Cox's multivariate regression model revealed that nodal status was the single most important independant prognostic factor influencing disease-free survival (p=0.001). Comparision of these results with other published reports with radiation therapy alone showed that a high rate of initial response to chemotherapy did not translate into local control or survival. At present time radiation therapy alone remains the standard treatment for locoregional cancer of the nasopharyngeal cancer. More controlled clinical trials must be completed before acceptance of chemotherapy as a part of treatment of advanced nasopharyngeal carcinoma.

  • PDF

MACRO-SHEAR BOND STRENGTH AND MICRO-SHEAR BOND STRENGTH OF CEROMER BONDED TO METAL ALLOY AND FIBER REINFORCED COMPOSITE

  • Park Hyung-Yoon;Cho Lee-Ra;Cho Kyung-Mo;Park Chan-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.654-663
    • /
    • 2004
  • Statement of problem. According to the fracture pattern in several reports, fractures most frequently occur in the interface between the ceromer and the substructure. Purpose. The aim of this in vitro study was to compare the macro shear bond strength and microshear bond strength of a ceromer bonded to a fiber reinforced composite (FRC) as well as metal alloys. Material and methods. Ten of the following substructures, type II gold alloy, Co-Cr alloy, Ni-Cr alloy, and FRC (Vectris) substructures with a 12 mm in diameter, were imbedded in acrylic resin and ground with 400, and 1, 000-grit sandpaper. The metal primer and wetting agent were applied to the sandblasted bonding area of the metal specimens and the FRC specimens, respectively. The ceromer was placed onto a 6 mm diameter and 3 mm height mold in the macro-shear test and 1 mm diameter and 2 mm height mold in the micro-shear test, and then polymerized. The macro- and micro-shear bond strength were measured using a universal testing machine and a micro-shear tester, respectively. The macro- and micro-shear strength were analyzed with ANOVA and a post-hoc Scheffe adjustment ($\alpha$ = .05). The fracture surfaces of the crowns were then examined by scanning electron microscopy to determine the mode of failure. Chi-square test was used to identify the differences in the failure mode. Results. The macro-shear strength and the micro-shear strength differed significantly with the types of substructure (P<.001). Although the ceromer/FRC group showed the highest macroand micro-shear strength, the micro-shear strength was not significantly different from that of the base metal alloy groups. The base metal alloy substructure groups showed the lowest mean macro-shear strength. However, the gold alloy substructure group exhibited the least micro-shear strength. The micro-shear strength was higher than the macro-shear strength excluding the gold alloy substructure group. Adhesive failure was most frequent type of fracture in the ceromer specimens bonded to the gold alloys. Cohesive failure at the ceromer layer was more common in the base metals and FRC substructures. Conclusion. The Vectris substructure had higher shear strength than the other substructures. Although the shear strength of the ceromer bonded to the base metals was lower than that of the gold alloy, the micro-shear strength of the base metals were superior to that of the gold alloy.

Three-dimensional MHD modeling of a CME propagating through a solar wind

  • An, Jun-Mo;Inoue, Satoshi;Magara, Tetsuya;Lee, Hwanhee;Kang, Jihye;Kim, Kap-Sung;Hayashi, Keiji;Tanaka, Takashi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.70.2-70.2
    • /
    • 2014
  • We developed a three-dimensional (3D) magnetohydrodynamic (MHD) simulation code to reproduce the structure of a solar wind and the propagation of a coronal mass ejection (CME) through it. This code is constructed by a finite volume method based on a total variation diminishing (TVD) scheme using an unstructured grid system (Tanaka 1994). The grid system can avoid the singularity arising in the spherical coordinate system. In this study, we made an improvement of the code focused on the propagation of a CME through a solar wind, which extends a previous work done by Nakamizo et al. (2009). We first reconstructed a solar wind in a steady state from physical values obtained at 50 solar radii away from the Sun via an MHD tomography applied to interplanetary scintillation (IPS) data (Hayashi et al. 2003). We selected CR2057 and inserted a spheromak-type CME (Kataoka et al. 2009) into a reconstructed solar wind. As a result, we found that our simulation well captures the velocity, temperature and density profiles of an observed solar wind. Furthermore, we successfully reproduce the general characteristics of an interplanetary coronal mass ejection (ICME) obtained by the Helios 1/2 spacecraft (R. J. FORSYTH et al. 2006).

  • PDF

The Effect of Glide Path on Canal Centering Ability in Reciprocating File System (Reciprocating 파일 시스템에서 Glide Path가 근관만곡도 유지에 미치는 영향)

  • Zang, Ki-Choul;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.3
    • /
    • pp.245-252
    • /
    • 2012
  • The purpose of this study was to evaluate the influence of glide path on canal centering ratio after instrumentation with different single file systems; WaveOne and Reciproc. Reciproc R25 (VDW), WaveOne Primary (Dentsply Maillefer) and PathFile #13, 16, 19 (Dentsply Maillefer) were used in this study. In no glide path groups, Reciproc files and WaveOne files used for canal preparation without glide path. In glide path groups, the PathFile were used before canal preparation. Methylene blue dye was introduced into the canal to obtain a clear pre-instrumentation image. Pre-instrumentation images and post-instrumentation images were scanned using Epson Perfection V700 Photo scanner (Epson, Nagano, Japan). Transparencies of post-instrumentation images were changed and superimposed on pre-instrumentation images using Adobe Photoshop CS 3 (Adobe Systems Incorporated, San Jose, CA, USA). The centering ratio was calculated for each instrumented canal using the following formula: CR=|X1-X2|/Y. It was statistically analyzed using two-way ANOVA at 95% confidential level. The centering ratio in glide path groups were significant less than it in no glide path groups at 3, 4, 5 and 6 mm level. Except 1 and 6 mm level, WaveOne groups had significant less centering ration than Reciproc groups. At 6 mm level, there was no significant difference between WaveOne and Reciproc. In the limitation of this study, creation of a previous glide path before reciprocating motion instrumentation in curved canal appears to be appropriate and WaveOne system can be used for preparation of curved canal without severe aberrations.

Monte Carlo Simulation for Development of Diagnostic Multileaf Collimator (진단용 다엽콜리메이터 개발을 위한 몬테칼로 시뮬레이션 연구)

  • Han, Su-Chul;Park, Seungwoo
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.595-600
    • /
    • 2016
  • The diagnostic multileaf collimator(MLC) was designed for patient dose reduction in diagnostic radiography We used monte carlo simulation code (MCNPX, LANL, USA) to evaluate efficiency of shielding material for making diagnostic MLC as preliminary study. The diagnostic radiography unit was designed using SRS-78 program according to tube voltage (80,100,120 kVp) and acquired energy spectrums. The shielding material was SKD11 alloy tool steel that is composed of 1.6% carbon(C), 0.4% silicon(Si), 0.6% manganese (Mn), 5% chromium (Cr), 1% molybdenum(Mo) and vanadium(V). The density of it was $7.89g/cm^3$.Using tally card 6, we calculated the shielding efficiency of MLC according to tube voltage. The results was that 98.3% (80 kVp), 95.7 %(100 kVp), 93.6% (120 kVp). We certified efficiency of diagnostic MLC fabricated from SKD11 alloy steel by monte calro simulation. Based on the results, we designed the diagnostic MLC and will develop the diagnostic MLC for reduction of patient dose in diagnostic radiography.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.