• 제목/요약/키워드: 316 Stainless Steel

검색결과 469건 처리시간 0.022초

A NEW BOOK: 'LIGHT-WATER REACTOR MATERIALS'

  • OLANDER DONALD R.;MOTTA ARTHUR T.
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.309-316
    • /
    • 2005
  • The contents of a new book currently in preparation are described. The dearth of books in the field of nuclear materials has left both students in nuclear materials classes and professionals in the same field without a resource for the broad fundamentals of this important sub-discipline of nuclear engineering. The new book is devoted entirely to materials problems in the core of light-water reactors, from the pressure vessel into the fuel. Key topics deal with the $UO_2$ fuel, Zircaloy cladding, stainless steel, and of course, water. The restriction to LWR materials does not mean a short monograph; the enormous quantity of experimental and theoretical work over the past 50 years on these materials presents a challenge of culling the most important features and explaining them in the simplest quantitative fashion. Moreover, LWRs will probably be the sole instrument of the return of nuclear energy in electric power production for the next decade or so. By that time, a new book will be needed.

크리프 균열개시 시간에 대한 구속효과 영향의 정량화 (Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times)

  • 이승호;정현우;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

염화물 환경에서 스테인리스강 용접부의 공식저항성 향상을 위한 마찰교반공정 적용효과에 관한 연구 (A study on the Application Effect of Friction Stir Processing for Enhanced Pitting Corrosion Resistance of Stainless Steel Welds in Chloride Environment)

  • 하종문;심덕남;김승현
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.84-92
    • /
    • 2023
  • As temporary storage facilities for spent nuclear fuels in domestic nuclear power plants are expected to be saturated, external intermediate storage facilities would be required in the future. Spent nuclear fuels are stored in metal canisters and then placed in a dry environment within concrete or metal casing for operation. In the United States, the dry storage method for spent nuclear fuels has been operated for an extended period. Based on the corrosion experiences of dry storage canisters in chloride environments, numerous studies have been conducted to reduce corrosion in welds. With the construction of intermediate storage facilities in Korea for spent nuclear fuels expected near coastal areas adjacent to nuclear power plants, there is a need for research on the corrosion occurrence of welds and mitigation methods for canisters in chloride environments. In this paper, we measured and compared the residual stresses in the Heat-Affected Zones (HAZ) after electron beam welding (EBW) and gas tungsten arc welding (GTAW) processes for candidate materials such as 304L, 316L, and duplex stainless steel(DSS). We investigated the possibility of microstructure control through the application of surface modification processes using friction stir processing (FSP). Corrosion tests on each welded specimen revealed a higher corrosion rate in EBW welds compared to GTAW. Furthermore, it was confirmed that corrosion resistance improved due to phase refinement and redistribution of precipitates when FSP was applied.

오일샌드 플랜트용 금속소재의 마모 특성에 대한 실험적 연구 (Experimental Study on Wear Characteristics of Metallic Materials used in Oil Sands Plants)

  • 원성재;조승현;강대경;허중식
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.31-35
    • /
    • 2017
  • Recently, international attention has been focused on the development of non-traditional energy resources such as shale gas and oil sands, due to the steep increase in the demand for natural resources. The materials incorporated in an oil gas plant module experience extreme environments, and are prone to various problem such as fracture, corrosion and abrasion due to low-temperature brittleness. In order to improve the plant life, it is necessary to perform characteristics study and performance evaluation of the materials. In particular, this paper explains the main set of materials which are most frequently used in oil sands plant project. In order to investigate wear characteristics, the authors carried out abrasive wear tests of TP 316, stainless steel and SS 400, structural rolled steel. For the analysis of the abrasive wear resistance of an oil sands plant, the authors carried out the test according to ASTM G 105 "Standard Test Method for Conducting Wet Sand/Rubber Wheel Abrasion Test" standard guidelines. The authors have derived the results from the data associated with the loss of mass with respect to wear rate. During the test, for a given wear length for 10,000 revolutions, the rotational speed and applied force of the rubber wheel were varied.

핵 융합로 제1벽의 냉각성능에 관한 수치해석적 연구 (Numerical analysis of the cooling effects for the first wall of fusion reactor)

  • 정인수;황영규
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.18-30
    • /
    • 1999
  • A heat transfer analysis for the two-dimensional (2-D) steady state using finite difference method (FDM) is performed to predict the thermal behavior of the primary first-wall (FW) system of fusion reactor under various geometric and thermo-hydraulic conditions, such as the beryllium (Be) armor thickness, pitch of cooling tube, and coolant velocity. The FW consists of authentic steel (type 316 stainless steel solution annealed) for cooling tubes, Cu for cooling tubes embedding material, and Be for a protective armor, based on the International Thermonuclear Experiment Reactor (ITER) report. The present 2-D analysis, the control volume discretized with hybrid grid (rectangular grid and polar grid) and Gauss-Seidel iteration method are adapted to solve the governing equations. In the present study, geometric and thermo-hydraulic parameters are optimized with consideration of several limitations. Consequently, it is suggested that the adequate pitch of cooling tube is 22-32mm, the beryllium armor thickness is 10-12mm, and that the coolant velocity is 4.5m/s-6m/s for $100^{\circ}C$ of inlet coolant temperature. The cooling tube should locate near beryllium armor. But, it would be better for locating the center of Cu wall, considering problems of material and manufacturing. Also, 2-D analysis neglecting the axial temperature distribution of cooling tube is appropriate, regarding the discretization error in axial direction.

  • PDF

레이저 클래딩법을 이용한 AISI 316L 스테인리스강 내 Y2O3입자의 분산거동 (Dispersion Behaviors of Y2O3 Particles Into Aisi 316L Stainless Steel by Using Laser Cladding Technology)

  • 박은광;홍성모;박진주;이민구;이창규;설경원;이양규
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.269-274
    • /
    • 2013
  • The present work investigated the dispersion behavior of $Y_2O_3$ particles into AISI 316L SS manufactured using laser cladding technology. The starting particles were produced by high energy ball milling in 10 min for prealloying, which has a trapping effect and homogeneous dispersion of $Y_2O_3$ particles, followed by laser cladding using $CO_2$ laser source. The phase and crystal structures of the cladded alloys were examined by XRD, and the cross section was characterized using SEM. The detailed microstructure was also studied through FE-TEM. The results clearly indicated that as the amount of $Y_2O_3$ increased, micro-sized defects consisted of coarse $Y_2O_3$ were increased. It was also revealed that homogeneously distributed spherical precipitates were amorphous silicon oxides containing yttrium. This study represents much to a new technology for the manufacture and maintenance of ODS alloys.

알칼리 수전해용 전극에 관한 연구 (Study on the Electrode Characteristics for the Alkaline Water Electrolysis)

  • 최호상;임두순;유철휘;김재철;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.117-124
    • /
    • 2012
  • Alkaline electrolysis needs the electrode having a low overvoltage and good corrosion resistance in alkaline solution such as KOH and NaOH, for the oxygen and hydrogen production. The commercial materials such as SUS(stainless steel)-316, Ni and NiFe were evaluated for the electrode in alkaline electrolysis. The test solution for the alkaline electrolysis used 1~9M NaOH and 1~9M KOH. The voltage increased with an increase of current density in each solution. As for the 15wt.% (about 5M) NaOH, the voltage of the tested electrode under the current density of 1.8A/$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: Ni${\fallingdotseq}$NiFe$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: NiFe${\fallingdotseq}$SUS-316. From the results, it was estimated that NiFe and Ni was suitable as the electrode for the alkaline water electrolysis using NaOH and KOH electrolyte.

알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성 (Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis)

  • 안다솔;배기광;박주식;김창희;강경수;조원철;조현석;김영호;정성욱
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.

Ni buffer layer를 사용한 Si3N4/S.S316 접합체에서 접합계면의 미세구조 변화가 접합체의 기계적 특성에 미치는 영향 (Effects of Microstructural Change in Joint Interface on Mechanical Properties of Si3N4/S.S316 joint with Ni Buffer layer)

  • 장희석;박상환;권혁보;최성철
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.381-387
    • /
    • 2000
  • Si3N4/stainless steel 316 joints with Ni buffer layer were fabricated by direct active brazing method (DIB) using Ag-Cu-Ti brazing alloy only and double brazing method (DOB) using Ag-Cu brazing alloy with Si3N4 pretreated with Ag-Cu-Ti brazing alloy. For the joint brazed by DIB method, Ti was segregated at the Si3N4/brazing alloy interface, but was not enough to form a stable joint interface. In addition, large amounts of Ni-Ti inter-metallic compounds were formed in tehbrazing alloy near the joint interface, which could deplete the contents of Ti involved in the interfacial reaction. However, for the joint brazed by DOB method, segregation of Ti at the joint interface were enough to enhance the formation of stable interfacial reaction products such as TiN and Ti-Si-Ni-N-(Cu) multicompounds, which restricted the formation of Ni-Tio inter-metallic compounds in the brazing alloy during brazing with Ni buffer layer. Fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was much improved by using DOB method rather than DIB method. It could be deduced that the differences of fracture strength of the joint with Ni buffer layer depending on brazing process adapted were directly affected by the formation of stable joint interface and the change in microstructure of the brazing alloy near the joint interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of interface. It was found that fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was gradually reduced as the thickness of Ni buffer layer in the joint was increased from 0.1 mm to 10 mm. It seems to due to the increased residual stress in the joint as the thickness of Ni buffer layer is increased. The maximum fracture strength of Si3N4/S.S 316 joints with Ni buffer layer was 386 MPa, and the fracture of joint was originated at Si3N4/brazing alloy joint interface and propagated into Si3N4 matrix.

  • PDF

Stainless Steel Stent에 Pyrolytic Carbon과 SiC의 촉매적 CVD-Kinetic연구 (Catalytic CVD-Kinetics of Pyrolytic Carbon and SiC on the Stainless Steel Stent)

  • 이보성;이무용
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2000년도 추계학술대회
    • /
    • pp.30-33
    • /
    • 2000
  • 최근 국내에서도 관 동맥 질환 환자의 수가 급증하고 있으며, 관 동맥 질환의 치료 방법인 관 동맥 성형 술은 관 동맥 stent의 도입에 의하여 보편화되어 국내에서 년간 5000개 이상의 stent가 시술되고 있다. 그러나 stent는 고가(1,200천원/개)로 전량 수입에 의존하고 있으며, 시술 후 사망까지 이를 수 있는 혈전에 의한 급성 페쇠와 재 협착이 문제점이다. 이를 위한 한가지 방법이 생체 적합성이 뛰어난 복합 stent의 개발인데 SiC나 Carbon을 coating한 stent는 시술 후 혈전 형성을 억제하는 것으로 알려져 있다. 특히 가장 순수한 Pyrolytic carbon은 hemocompatibility가 탁월하고 기밀 성이기 때문에 본 연구에서 그의 CVB-Kinetics를 연구코저 하는 것이다. methane으로부터 pyrolytic carbon의 CVD는 온도에 따라서 다양한 구조를 가지며 따라서 그의 mechanism도 다양하다는 것은 잘 알려져 있다. 더구나 광간(균질)반응과 표면(불균질)반응의 정량적 관계에 따라서도 다르다는 것도 확인되었다. 그러나 stainless steel 316L로 만든 stent는 12 - 15 %의 Ni과 2%의 Mo을 함유해서 금속성을 잃지 않는 저온(600℃)에서도 pyrolytic carbon의 속매적 CVD가 가능함을 그리고 SiC의 코팅에 적합한 buffer layer 역할을 함을 확인하였다. 그리하여 본 연구는 반응기 설계에 필요한 저온 촉매적 pyrolytic carbon의 CVD-kinetics의 연구결로 그의 mechanism과 함께 rate law 식을 유도, 확인하였으며 600℃, 90kPa에서 P/sub ch4//P/sub H2/=5:1과 체류시간 1.8 sec가 최적임을 발견하였다. 이때 석출속도 11.2 g-mol/g-cat.h 혹은 두께속도로 73 nm/sec를 나타내었다.메타놀-물 (1 : 1) 유출액에서 $(0.80\;{\mu}g)$ 검출되었다. 하면 morey eel내장에서 얻은 독물질도 DEAE-셀루로즈에서 ST-1 과 ST-2로 나누어지며, 이 ST-1의 TLC, HPLC 및 알루미나 컬럼상의 거동이 파랑비늘돔에서 얻은 ST-1의 그것과 같으므로 scaritoxin으로 보고한 ST-1은 ciguatoxin의 형태인 less polar cigutoxin (LPCTX) 으로 생각된다.에서 각각 대조구의 57, 413 및 315% 증진되었다. 거품의 열안정성은 15분 whipping시, pH 4.0(대조구, 30.2%) 및 5.0(대조구, 23.7%)에서 각각 $0{\sim}38.0$$0{\sim}57.0%$이었고 pH 7.0(대조구, 39.6%) 및 8.0(대조구, 43.6%)에서 각각 $0{\sim}59.4$$36.6{\sim}58.4%$이었으며 sodium alginate 첨가시가 가장 양호하였다. 전체적으로 보아 거품안정성이 높은 것은 열안정성도 높은 경향이며, 표면장력이 낮으면 거품형성능이 높아지고, 비점도가 높으면 거품안정성 및 열안정성이 높아지는 경향이 있었다.protocol.eractions between application agents that are developed using different languages. Dynamic agent invocation is accomplished by Java Native Interface(JNI) that links two heterogeneous methods, and by KQML language interface that facilitates the communications between heterogeneous agents. This scheme of dyna