• Title/Summary/Keyword: 316 Stainless Steel

Search Result 469, Processing Time 0.026 seconds

Surface Quality and Corrosion of Additively Manufactured STS316L Treated by Ultrasonic Nanocrystal Surface Modification (적층제조된 스테인레스 316L에 대한 초음파나노표면개질에 따른 표면특성 및 부식성에 관한 연구)

  • Kim, Jun-Ho;Oh, Yeong-Taek;Park, Han-Byeol;Lee, Dong-Ho;Kim, Hwa-Jeong;Kim, Ui-Jun;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.94-103
    • /
    • 2020
  • This study investigated the effects of ultrasonic nanocrystal surface modification (UNSM) on the deteriorated surface of AISI SUS316L additively manufactured (AM) using the powder bed fusion (PBF) technique. Specifically, the effects of UNSM conditions on surface topology, hardness, and anti-corrosion were examined. Before UNSM treatment, the stainless steel 316L powder was processed via the PBF machine to prepare a substrate. We observed surface changes due to UNSM treatments in PBF SUS316L substrates and examined the correlation between topology changes, roughness, hardness, and anti-corrosion. After UNSM treatment, the coarse as-built surface was refined, and a regular micro-profile was implemented. Compared to the non-treated PBF sample, the waviness and roughness of the surfaces after UNSM treatment decreased by up to 56.0% and 94.5%, respectively, and decreased further as the interval decreased. The hardness improved by up to 63.0% at a maximum depth of 500 ㎛ from top surface by the UNSM treatment. The results of the corrosion test showed that the corrosion resistance of the UNSM specimens was moderately improved compared to that of the untreated surface. This study confirmed that UNSM is an effective post-processing technique for additively manufactured parts.

Oblique Incidence Technique for Ultrasonic Nonlinear Characterization in SUS316L Alloy (SUS316L 강의 초음파 비선형 특성평가를 위한 경사입사기법)

  • Baek, Seung-Hyun;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.345-351
    • /
    • 2010
  • The oblique incidence technique for ultrasonic nonlinear characterization was studied in stainless steel 316L alloy subjected to high cycle fatigue. A dog-bone plate specimen was prepared to make different faitgue-driven deformation at each position where the stress concentration could occur in the middle of specimen. In addition to the normal transmission technique, the oblique incidence technique which is newly suggested in this study, was used to measure ultrasonic nonlinear parameter. The fatigued specimen shows higher ultrasonic nonlinear parameter than the virgin specimen for both techniques. Ultrasonic nonlinear parameter highly increases in the middle of test specimen where the stress concentration existes. Relative nonlinear parameter has strong correlation with fatigue damage. Consequently, the oblique incidence technique with longitudinal wave can be potential to characterize high cycle fatigue damage.

Retardation of Fatigue Crack Propagation by Single Overloading (단일과대하중에 의한 피로균열전파의 지연거동)

  • 김상철;함경춘;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.20-29
    • /
    • 1992
  • Effects of strain hardening exponents on the retardation behavior of fatigue crack propagation are experimentally investigated. The retardation of fatigue crack propagation seems to be induced by the crack closure at crack tip. The phenomenon of crack closure becomes remarkable with the increment of strain hardening exponent and magnitude of percent peak load. The ratio of crack growth increment(a$\_$d//w$\_$d/) is influenced by a single overloading (a$\_$d/) and estimated plastic zone size (W$\_$d/=2r$\_$y/) is increased according with the increasing of strain ha.dening exponents. The number of retarded crack growth cycles were (N$\_$d/) decreased as the baseline stress intensity factor .ange( K$\_$b/) was increased. Within the limitation of these experimental results obtained under the single overload, an empirical relation between crack retardation ratio (Nd/N*), strain hardening exponent (n) and percent peak load (%PL) has been proposed as; Nd/N*= exp [PL $.$ PL$.$A(n)+B(n) ] where, A(n)=${\alpha}$n+${\beta}$, B(n)=${\gamma}$n+$\delta$, PL=%PL/100 and ${\alpha}$=0.78, ${\beta}$=0.54, ${\gamma}$=0.58 and $\delta$=-0.01, It is interesting to note that all these constants are identical for materials such as aluminum(A3203), steel(S4SC), steel(SS41) and stainless steel(SUS316) used in this experimental study.

  • PDF

Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel (SA508 탄소강 및 오스테나이트 스테인리스강의 표면잔류응력에 미치는 기계가공효과)

  • Lee, Kyoung-Soo;Lee, Seong-Ho;Park, Chi-Yong;Yang, Jun-Seok;Lee, Jeong-Geun;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.543-547
    • /
    • 2011
  • Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method.

Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment (AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향)

  • Lee, In-Sup
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.

Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold (진공사출금형용 STS316L 금속 다공체 제조 및 기계적 특성)

  • Kim, Se Hoon;Kim, Sang Min;Noh, Sang Ho;Kim, Jin Pyeong;Shin, Jae Hyuck;Sung, Si-Young;Jin, Jin Kwang;Kim, Taean
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2015
  • In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under $45{\mu}m$ and over $180{\mu}m$, and then they were compacted with various pressures and sintered at $1210^{\circ}C$ for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to $79l/min{\cdot}cm^2$. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.

Development of Evaluation Technique for Hydrogen Embrittlement Behavior of Metallic Materials Using in-situ SP Testing under Pressurized Hydrogen Gas Conditions (고압수소가스하 in-situ SP시험법을 사용한 금속재료의 수소취화거동 평가기법 개발)

  • Shin, Hyung-Seop;Kim, Ki-Hyun;Baek, Un-Bong;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1377-1382
    • /
    • 2011
  • Recently, alternative and novel energy resources have been developed for use in the future because of the current environmental problems and exhaustion of fossil energy resources. Hydrogen energy has many merits, such as its environmental friendliness, easy storage, and easy production, but it also has disadvantages, in that it is highly combustible and explosive. In this study, a test procedure using a simple SP test under highly pressurized hydrogen gas conditions was established. In order to evaluate its applicability, SP tests were carried out using a stainless steel (SUS316L) sample under atmospheric, pressurized helium, and pressurized hydrogen gas conditions. The results under the pressurized hydrogen gas condition showed fissuring and produced a reduction of the elongation in the plastic instability region due to hydrogen embrittlement, showing the effectiveness of the current in-situ SP test.

Impact of Energy Density and Bead Overlap Ratio of a SUS316L Specimen Fabricated using Selective Laser Melting on Mechanical Characteristics (선택적 레이저 용융 공정으로 제작된 시편의 SUS316L 에너지밀도 및 비드 중첩률에 따른 기계적 특성 변화 분석)

  • Lee, Dong Wook;Kim, Woo Sung;Sung, Ji Hyun;Kim, Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.42-51
    • /
    • 2021
  • Investigations of process parameters are essential when fabricating high-quality parts using additive manufacturing. This study investigates the change in the mechanical characteristics of a SUS316L specimen fabricated using selective laser melting based on the energy density and bead overlap ratio. The SUS316L powder particles were spherical and 35 ㎛ in size. Single-bead and hexahedral shape deposition experiments were performed sequentially. A single bead experiment was performed to obtain the bead overlap ratios for different laser parameters utilizing laser power and scan speed as experimental parameters. A hexahedral shape deposition experiment was also performed to observe the difference in mechanical properties, such as the internal porosity, surface roughness, and hardness, based on the energy density and bead overlap ratio of the three-dimensional printed part. Laser power, scan speed, overlap ratio, and layer thickness were chosen as parameters for the hexahedral shape deposition experiment. Accordingly, the energy density applied for three-dimensional printing, and the experimental parameters were calculated, and the energy density and bead overlap ratio for fabricating parts with good properties have been suggested.

A Study on the Weld Part Fracture Toughness of Austenite Type Stainless Steel for Cryogenic Liquid Nitrogen Storage Tank (초저온 액화질소 저장탱크 오스트나이트계 스테인리스강의 용접부의 파괴인성 연구)

  • Kim, Young-Deuk;Choi, Dong-Jun;Park, Hyung-Wook;Cho, Jong-Rae;Bae, Won-Byoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.802-808
    • /
    • 2011
  • One of the important mechanical properties of cryogenic temperature structure material is fracture toughness. Research on normalization of fracture toughness test method is becoming very important issue with development of cryogenic structural elements. Specially, mechanical properties estimation by each micro-structure of welding department is important because it can cause unstable fracture when use under cryogenic environment in case of welding department. In this study, fracture toughness estimation test was carried out to unloading compliance method and sensitization heat-tread minimized test specimen at liquid nitrogen (77K), liquid helium (4K), 293K temperature to STS-316L base metal and weld metal.

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 계계적물성치 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.28-33
    • /
    • 2008
  • This paper presents the characteristics of mechanical properties within the heat affected zones(HAZs) of dissimilar metal weld joint between SA508 Gr.1a and F3l6 stainless steel(SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the heat affected regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope(OM) and transmission microscope(TEM). The results showed that significant gradients of the yield stress(YS), ultimate tensile stress(UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ developed during the welding process. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS. TEM micrographs demonstrated these characteristics of the HAZ of F316 SS was associated with a dislocation-induced strain hardening.