• Title/Summary/Keyword: 304 SS

Search Result 83, Processing Time 0.022 seconds

Microstructural Characterization of SS304 upon Various Shot Peening Treatments

  • He, Yinsheng;Li, Kejian;Cho, In Shik;Lee, Chang Soon;Park, In Gyu;Song, Jung-il;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.155-169
    • /
    • 2015
  • Plastic deformation was introduced to the austenitic (${\gamma}$) stainless steel of SS304 by air blast shot peening, ultrasonic shot peening, and ultrasonic nanocrystalline surface modification. Various deformation structures were formed. The hardness, the deformation structure and the underlying grain refinement mechanism were investigated. In the deformed region, planar dislocation arrays and deformation twin (DT), the DT-DT intersection and ${\varepsilon}$-martensite structures, and ${\alpha}^{\prime}$-martensite were formed in the respective regions of low, medium, and high strain. The grain refinement mechanism is found to be closely related to the 1) sub-division of coarse grains by DT, shear bands and their intersection, and 2) formation of nano-sized ${\alpha}^{\prime}$-martensite due to the high plastic deformation.

An evaluation of Fatigue Crack Propagation Behaviors on Cyclic Overload Test (반복과대하중에 의한 피로파괴거동의 고찰)

  • 김용수;신근하;강동명;김병석
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.2
    • /
    • pp.47-56
    • /
    • 1992
  • The retardation effect of fatigue crack propagation after cyclic overloading seems to be affected by strain hardening exponent. Namely, for the material with high values of n, the delay effect is found to be severe. We proposed a modified crack retardation equation which may apply the retardation of fatigue crack growth after a cyclic overloading, as (da/dN)'$_{cyc}$=($\mu$n+λ)B $\Delta$ $K^{q}$ /[(1- $R_{eff}$) $K_{cf}$$\Delta$K]. where, $R_{eff}$ is effective stress ratio [=( $K_{min}$-K, os)/( $K_{max}$$K_{res}$)] The constants $\mu$=-0.5 and λ=0.6, and the values are found to be identical for materials such as aluminum (A 1060), steel (SS 34), brass ( $B_{s}$ SIB) and stainless steel (SUS 304) used in this investigation. (SUS 304) used in this investigation.ation.n.n.

  • PDF

Effects of the Co-treatment of Municipal Wastewater with Microwave-Irradiated Excess Sludge on the Performance of the Activated Sludge Process (초단파조사 처리된 잉여슬러지와 하수의 병합처리가 활성슬러지공법의 성능에 미치는 영향)

  • Kim, Nam-Chul;Jang, Myung-Bae;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.304-310
    • /
    • 2007
  • The purpose of this research was to investigate the effects of the co-treatment of municipal wastewater with microwave-irradiated excess sludge on the treatment efficiency and excess sludge production of the activated sludge process. When 250 mL of excess sludge with a MLSS concentration of approximately 2,000 mg/L was microwave-irradiated at $20^{\circ}C$ for $40\sim300$ sec by a microwave oven (2,450 MHz, 700 W), the temperature of the sludge increased at a rate of approximately $20^{\circ}C/min$ and the SCOD, TKN and T-P concentrations of the sludge showed the highest increase in the irradiation time of $40\sim130$ sec. And, the oxygen uptake rate measurement of the sludge microorganism suggested most of the microorganisms in the sludge were destroyed at an irradiation time above 130 sec(above $65^{\circ}C$). When the municipal wastewater and microwave-irradiated excess sludge was co-treated by the activated sludge process, almost no effect was observed in the pH and alkalinity of both the influent and effluent, but the influent concentrations of SS, COD, T-N and T-P increased. Even though the effluent SS, BOD and T-P concentrations showed almost no effect, the COD and TKN concentrations increased. The microbial yield coefficient decreased at a rate of 0.91 g SS/g COD removed as the irradiation ratio increased at a rate of 1 g SS/g SS-day.

A Study on Machining Characteristics of Face Milling Using Coated Tool (코팅공구를 사용한 Face Milling의 가공특성에 관한 연구)

  • 이위로;김성일;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.106-111
    • /
    • 1993
  • This experimental study mainly deal with the single and multi-insert cutting characteristics using coated tool. Because metal cutting of the single and multi-insert has a large relation to the improvement of productivity, the economic cutting process can be achieved by the analysis of proper metal cutting mechanism. Therefore, machining characteristics of face milling in this paper has been studied by investigating the role of different insert number which is concerned with mean cutting force, the RMS values of AE(acoustic emission) signal, tool life and surface roughness in milling SS 41 and SUS 304.

  • PDF

Development of Eddy Current Test Probe for Profilometry Inspection of Tube (원형튜브 단면형상검사용 와전류탐촉자 개발)

  • Lee, H.J.;Nam, M.W.;Lee, C.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.4
    • /
    • pp.262-269
    • /
    • 1997
  • An eddy current probe ($8{\times}1$ multiple-element, surface scan) was successfully designed and fabricated at the KEPRI using the impedance equivalent circuit theory. The probe is intended for the detection of circumferential deformations (cross-section view) of the heat exchanger tubing that can occur due to corrosion, erosion, and denting. Optimum design parameters providing the highest sensitivity and signal-to-noise ratio, such as the coil dimensions, electrical characteristics, and test frequencies, were determined based on initial laboratory experiments conducted on the test specimen (SS304 tubing: OD : 9.68mm, wall-thickness : 0.47mm) containing artificial flaws (e.g., dents and corroded surface on tube OD) using the available Zetec-made probe. Using this parameters, a new probe was made and tested on an unknown specimen. The result indicated that the new probe is capable of detecting the circumferential deformation with the error of ${\pm}0.2%$ (0.022mm) of the tube O.D.

  • PDF

The reliability analysis of Acoustic Emission(AE) testing for crack detectivity by sensors and materials (AE(음향방출) 검사 시 센서 및 재료에 따른 균열 검출능에 대한 신뢰성 분석)

  • Nam, Jun-Young;Lee, Sang-Yun;Hwang, Woong-Gi;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.419-423
    • /
    • 2011
  • Unlike other non-destructive inspection method, AE Structural defects that are likely to grow in the operation status can be detected, and the advantage of being due to the continuous monitoring of large structures has been widely used to evaluate the stability. AE sensor used to detect sound wave that occurs between 20kHz to 20MHz. and Sound wave result may vary depending on sensor's sensitivity. In this paper, Tensile test conducted on STS 304 and SS400, and tries to detect the crack signal. In tensile test, specimens were conducted using different sensor sensitivity to the same tensile test condition. The crack signal parameters divided into 4 types of communities by conducting cluster analysis. It was demonstrated that crack signal of two sensor is not different by statistical analysis of null hypotheses. Based on the results, waveform of this tension test is crack signal.

  • PDF

Creep-Fatigue Crack Growth Behavior of a Structure with Crack Like Defects at the Welds

  • Lee, Hyeong-Yeon;Kim, Seok-Hoon;Lee, Jae-Han;Kim, Byung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2136-2146
    • /
    • 2006
  • A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at $600^{\circ}C$ and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French Al6 procedure showed that the Al6 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

노심 용융물과 콘크리트와의 반응(MCCI)에 대한 실험적 연구

  • Noh, Ki-Man;Kim, Jong-Hwan;Shin, Ki-Yeol;Jeong, Mo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.461-466
    • /
    • 1996
  • 원전에서 가상적인 중대사고 발생시 격납용기 하부 캐비티에서 고온의 노심용융물과 콘크리트와의 반응시 생성되는 기체의 종류 및 양, 콘크리트 침식율 및 주변 열전달 특성은 중대사고 연구의 쟁점으로 이에 대한 많은 연구가 수행되고 있다. 본 연구에서는 용융 유사물로 고온의 금속 용융물(SS304) 및 Thermite (Fe+A1$_2$O$_3$)를 영광 3,4호기 원전에 사용한 콘크리트 시편에 부어 침식율, 생성가스 종류 및 주변 열전달 계수를 측정하였고 후에 MELCOR 로드내 MCCI 해석 부분인 CORCON MOD-3 코드와 비교할 계획이다. 본 논문에서는 MCCI scoping test의 실험 장치, 실험 방법 및 곁과를 소개하였다. 약 1$600^{\circ}C$ 의 SUS 304 용융물(10kg)은 충분치 않은 melt superheat와 용융물 이송과정시 열손실로 인해 침식이 거의 일어나지 않았으나, Thermite 실험에서는 측면 및 하부 방향으로 최대 2.7cm/min 의 침식율을 보였으며 하부방향으로의 최대 열유속은 약 3.1MW/$m^2$로 나타났다. 본 연구의 결과 및 실험 기술은 차세대 원전의 중대사고 완화를 위한 원자로 캐비티 설계 실증실험에 응용될 예정이다.

  • PDF