• Title/Summary/Keyword: 3.5 GHz 대역

Search Result 731, Processing Time 0.046 seconds

A Design and Implementation of CPW-fed Antenna with Two Branch Strip for WLAN Applications (WLAN 적용을 위한 두 개의 분기 선로를 갖는 CPW 급전 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han;Choi, Young-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.441-448
    • /
    • 2015
  • In this paper, a CPW-fed dual-band monopole antenna with two branch strips for WLAN(Wireless Local Area Networks) applications was designed, fabricated and measured. The proposed antenna is based on a CPW-feeding structure, and composed of two branch strips and then designed and tuned the length of two branch lines to obtained required frequencies bands. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and carried out simulation about parameters $L_5$, $L_8$, $W_3$, $W_5$, $W_9$. The proposed antenna is fabricated on the FR-4 substrate using the obtained parameters. The numerical and experiment results demonstrated that the proposed antenna obtained the -10 dB impedance bandwidth 1,095 MHz (1.57~2.665 GHz) for 2.4 GHz band and 1,680 MHz (4.99~6.67 GHz) for 5 GHz band satisfied requirement while simultaneously covering the WLAN bands. And characteristics of gain and radiation patterns are determined for WLAN operating bands.

Design and Fabrication of Quadruple Band Antenna with DGS (DGS를 적용한 4중대역 안테나의 설계 및 제작)

  • Kim, Min-Jae;Choi, Tea-Il;Choi, Young-Kyu;Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • In this paper, we propose a quadruple band antenna for GPS/WLAN/WiMAX application. The proposed antenna has quadruple band characteristics by considering the interconnection of four strip lines and DGS on the ground place. The total substrate size is 20.0 mm (W1) ⨯27.0 mm (L1), thickness (h) 1.0 mm, and the dielectric constant is 4.4, which is made of 20.0 mm (W2)⨯ 27.0 mm (L8 + L6+ L10) antenna size on the FR-4 substrate. From the fabrication and measurement results, bandwidths of 60 MHz (1.525 to 1.585 GHz) bandwidth for GPS band, 825 MHz (3.31 to 4.135 GHz) bandwidth for WiMAX band and 480 MHz (2.395 to 2.975 GHz) and 385 MHz (5.10 to 5.485 GHz) bandwidth for WLAN band were obtained on the basis of -10 dB. Also, gain and radiation pattern characteristics are measured and shown in the frequency of triple band as required.

Design of UWB Hexagon Patch Antenna with WLAN Notch Band Characteristic (WLAN 노치 대역 특성을 갖는 UWB 육각형 패치 안테나)

  • Kim, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.286-290
    • /
    • 2017
  • In this paper, we have proposed a hexagonal patch UWB antenna with a band notch characteristic where the notch band of 5.15 ~ 5.85 GHz band of WLAN was induced by inserting a circular slit in the patch. The impedance bandwidth of the proposed antenna meet the band width criteria of UWB communication system where is mentioned as frequencies range form 3.1 ~ 11.8 GHz. The characteristic band at 5.2 ~ 5.8 GHz notch band was observed. The radiation pattern of the antenna shows a directinal radiation pattern at $0^{\circ}$ and $180^{\circ}$ in XZ-plane and YZ-plane is an omni-directional pattern, respectively. In addition, it is observed that increase in frequency results in increases of the antenna gain whereas the notch band section is decreased. The proposed antenna was designed TRF-45 substrate with thickness of 1.62 mm, a loss tangent of 0.0035, a relative permittivity of 4.5 and designed were used Ansys Inc. HFSS.

Frequency Sharing with FSS Earth Stations for CBRS Services (CBRS 서비스를 위한 FSS 지구국 주파수 공동사용)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.507-514
    • /
    • 2019
  • Federal communications commissions (FCC) has announced the first set of rules for 3.5 GHz (3,550 - 3,700 MHz) band used Navy radar and fixed satellite service (FSS) earth stations as primary service to sharing for citizen broadband radio service (CBRS) enable development of relatively low powered network technologies like small cells. Since CBRS sharing technique based on the 3-tiered spectrum access system (SAS) is able to protect the higher tiered users from harmful interference from lower tiered users, it has been considered actively to be introduced in Korea. However, 3.5 GHz band had been already allocated to the 5G services in Korea, the sharing studies have been carried out for 3,700 - 5,000 MHz, As the result, the 3.8 GHz (3,800 - 3,900 MHz) band used for only FSS system is able to be sharing, and an introduction of CBRS has been proposed in Korea by analyzing the interference to the FSS earth stations.

Internal Ultra-Wideband Antenna for Wireless USB Dongles (무선 USB 동글을 위한 내장형 광대역 안테나)

  • Kim, Jin-Hyuk;Hwang, Keum-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1638-1639
    • /
    • 2011
  • 본 논문에서는 초소형 무선 USB 동글 장치를 위한 광대역 접힌(folded) 모노폴 안테나를 제안하였다. 제안된 안테나는 CPW 급전으로부터 삼지창 형상의 선로를 적용하여 광대역 특성을 구현하였다. 최종 설계된 안테나의 크기는 $16{\times}44.8{\times}3.5\;mm^3$이며, low-profile의 무선 USB 동글용 안테나에 적합하다. 제안된 안테나는 $S_{11}$ < -10 dB 기준으로 2.28~10.8 GHz의 공진 주파수 대역을 가지므로 WiBro (2.3~2.4 GHz), Bluetooth (2.4~2.484 GHz), WiMAX (2.5~2.7 GHz, 3.4~3.6 GHz), satellite DMB (2.605~2.655 GHz), 802.11b/g/a WLAN (2.4~2.485 GHz, 5.15~5.825 GHz), UWB(3.1~10.6 GHz)의 무선 대역을 지원 할 수 있다. 측정된 평균 이득의 범위는 -3.41 dBi 에서 -0.84 dBi 이다.

  • PDF

A Sutdy on the UWB Intenna with Band-Stop Function for Mobile Handsets (대역 저지 특성을 갖는 휴대 단말기용 초소형 UWB Intenna에 관한 연구)

  • Lim, Yo-Han;Yoon, Young-Joong;Ho, Yo-Chuol;Jung, Byung-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1445-1454
    • /
    • 2008
  • In this paper, small UWB antenna with band-stop function for mobile handsets is proposed. A gap between radiator and under and side ground is adjusted for small size and broadband. A radiator is folded to the back side of PCB for miniaturization and tapered feeding structure is used to enhance matching characteristic. A antenna clearance has a size of $14{\times}14\;mm^2$ and a size of radiator is $10{\times}7\;mm^2$. It covers all UWB band from 3.15 GHz to 4.75 GHz and from 7.2 GHz to 10.2 GHz for VSWR<2 and has band stop characteristic at 5.8 GHz. A maximum gain is measured as 5.85 GHz. In case conventional handset case is considered, it also covers all UWB and a maximum gain is measured from -2 dBi to -2 dBi.

A Printed, Wideband Folded Monopole Antenna Coupling with a Parasitic Inverted-L Element for Bluetooth, WiMAX and UWB Systems (Bluetooth, WiMAX, UWB 시스템용 역 L형 무급전 소자 결합 프린트형 광대역 폴디드 모노폴 안테나)

  • Kim, Ki-Baek;Ryu, Hong-Kyun;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1101-1110
    • /
    • 2011
  • This paper presents a printed, wideband folded monopole antenna for laptop and tablet computer applications. The proposed antenna is designed to cover bandwidth(2.3~10.6 GHz) of Bluetooth, WiMAX, and UWB system by using the printed folded monopole antenna having asymmetrical line width coupling with a parasitic inverted- L element. Also, wireless LAN band(5.15~5.85 GHz) which interferes with UWB system is rejected by inserting half-wavelength open stub in the folded monopole antenna. -10 dB bandwidth of the fabricated wideband antenna is 2.27~10.6 GHz (4.7:1) and -10 dB band-rejected bandwidth is measured as 700 MHz(5.15~5.85 GHz, 12.72 %). The gain and efficiency of the antenna except for the rejected band are higher than 3.93 dBi and 91.89 % and are measured as -2 dBi and 14.65 % at 5.5 GHz which is band-rejected frequency. The size of the antenna is suitable to install for small space of tablet and laptop computers as 12.75(1 ${\lambda}$/10)${\times}$12(1 ${\lambda}$/11) $mm^2$(${\lambda}$ is free space wavelength at 2.3 GHz). Therefore, we verified that the designed antenna is appropriate for wideband antenna of tablet and laptop PC applications.

Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나)

  • Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2763-2768
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "I"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally to verify the results of this study. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, low cross-polarization level of < -20 dB, and realized gain > 0 dBi within the frequency band.

Internal Hook-shaped Patch Antenna for Multiband Wireless USB Dongle Applications (다중대역 무선 USB 동글용 내장 Hook형 안테나)

  • Jeong, Seong-Jae;Hwang, Keum-Cheol;Shin, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.91-96
    • /
    • 2010
  • In this paper, an internal USB dongle antenna with a circular hook-shaped patch is proposed. The proposed antenna comprises of a circular hook-shaped patch and a monopole stub. The proposed antenna with the dimension of $10mm{\times}50mm{\times}0.8mm$ was fabricated on commercial FR-4 substrate with a dielectric constant of 4.6 and tangent loss of 0.025. The designed antenna exhibits three different resonant bandwidths, 2.4 GHz-2.5 GHz, 3.4 GHz-3.6 GHz, and 5.15 GHz-5.825 GHz. The measured radiation patterns are omni-directional at measured frequencies. Therefore, the proposed antenna is suitable for wireless USB dongle antenna that can support multiband wireless services such as WLAN, WiMAX and Bluetooth.

Design of the Microstrip antenna for 5.8GHz WLAN Application (5.8GHz 대역 WLAN용 마이크로스트립 안테나 설계)

  • Jo, Sung-sik;Lim, Tae-kyun;Ju, Yan-ro;Kim, Kab-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.453-456
    • /
    • 2009
  • In this paper, a Microstrip antenna for wireless LAN is designed in HyperLAN 5GHz. The IEEE 802.11a have allocated HyperLAN band. We proposed CPW-fed antenna structure for compact antenna. This structure shows that a ground plane and a patch plane are existed at one layer. The proposed antenna is designed on FR-4 substrate with a relative dielectric constant 4.3, thickness of 1.5mm and tangent loss 0.02. The designed antenna shows that VSWR is below 2 and has good return loss below -10dB over the 5.725~5.825GHz bandwidth with HyperLAN.

  • PDF