• Title/Summary/Keyword: 3-winding transformer

Search Result 120, Processing Time 0.026 seconds

Power Loss Calculation of High Frequency Transformers

  • Choi Geun-Soo;Yoon Shin-Yong;Baek Soo-Hyun;Kim Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.338-342
    • /
    • 2006
  • This paper analyzed the power loss of transformers considering the magnetic component. For this, each winding strategy and the effect of air gap between the ferrite core have been an important variable for optimal parameter calculation. Inductors are very well known design rules to devise, but the performance of the flyback converter as a function of transformer winding strategy has not been fully developed. The transformer analysis tool used was PExpert. The influence of the insulator thickness, effect of the air gap, how the window height and variation of the capacitive value effects the coil and insulator materials are some of parameters that have been analyzed in this work. The parameter analysis is calculated to a high frequency of 48[kHz]. Therefore, the final goal of this paper was to calculate and adjust the parameters according to the method of winding array and air gap minimizing the power loss.

Grid-friendly Control Strategy with Dual Primary-Side Series-Connected Winding Transformers

  • Shang, Jing;Nian, Xiaohong;Chen, Tao;Ma, Zhenyu
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.960-969
    • /
    • 2016
  • High-power three-level voltage-source converters are widely utilized in high-performance AC drive systems. In several ultra-power instances, the harmonics on the grid side should be reduced through multiple rectifications. A combined harmonic elimination method that includes a dual primary-side series-connected winding transformer and selective harmonic elimination pulse-width modulation is proposed to eliminate low-order current harmonics on the primary and secondary sides of transformers. Through an analysis of the harmonic influence caused by dead time and DC magnetic bias, a synthetic compensation control strategy is presented to minimize the grid-side harmonics in the dual primary side series-connected winding transformer application. Both simulation and experimental results demonstrate that the proposed control strategy can significantly reduce the converter input current harmonics and eliminates the DC magnetic bias in the transformer.

A Study on Combination Technology of a Transformer and a Superconducting Fault Current Limiter (변압기와 초전도한류기의 결합기술 연구)

  • Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.330-334
    • /
    • 2010
  • We tried to combine a transformer with a superconducting element and investigated the current limiting characteristics. When a superconducting element was connected to third winding of the transformer, the fault current was limited to about 90 % effectively. The fault current and consumption power were able to be controlled by the turn's ratio of secondary and third windings. It gives flexibility of the rating of a transformer in the power grid. As a result, power burden of a superconducting element was reduced by the decrease of turn's ratio in third winding of a transformer. It was because the voltage behavior of a superconducting element was dependent on turn's ratio of a transformer while the current characteristic was independent.

A Three-Winding Transformer Protective Relaying Algorithm Based on Flux Linkages Ratio (쇄교자속비를 이용한 3권선 변압기 보호 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Jin, E.S.;Won, S.H.;Lim, U.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.341-344
    • /
    • 2003
  • This paper proposes a tree-winding transformer protective relaying algorithm based on the ratio of increment of flux linkages (RIFL). The RIFL of the two windings is equal to the turns ratio for all operating conditions except an internal faults. For a single-phase transformer and three-phase transformer containing the wye-connected windings, the increments of flux linkages are calculated. for a three-phase transformer containing the delta-connected windings, the difference of the increments of flux linkages between the two phases are calculated using the line currents, because the winding currents are practically unavailable. Their ratios are compared with the turns ratio. The results of various tests show that the algorithm successfully discriminates internal faults from normal operation conditions such as magnetic inrush, overexcitation and external faults. The algorithm can not only detect internal winding faults, but reduce the operating time of a relay.

  • PDF

A Study on the Insulation Basis of Hts Transformer (초전도 변압기의 절연기반 연구)

  • Cheon, Hyeon-Gweon;Kwag, Dong-Soon;Yun, Mun-Soo;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.639-642
    • /
    • 2005
  • HTS Transformer developing is developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. Therefore, we prepared the model, that is Z continuous winding from Kapton insulated Cu tape for a small simulated the HTS transformer. For the development of electrical insulation design of a HTS transformer with Z continuous winding, we have been discussed insulation composition and investigated breakdown characteristics such as breakdown of liquid $N_2(LN_2)$, polymer and surface flashover on FRP and breakdown-surface combination in $LN_2$. Also we have been designed and manufactured a bobbin that has spiral slot for the Z continuous winding. The Z continuous winding mini-model from Kapton film insulated Cu tape for simulated 22.9kV class HTS transformer has been constructed using 0.1 % breakdown strength obtained by Weibull distribution. The widing model was measured their insulation characteristics such as ac (50kV, 1min) and impulse (154kV, $1.2\times50{\mu}s$ full wave, 3 times) withstand test and its excellent performance was confirmed.

  • PDF

Three-Winning Transformer Protection Based on Flux Linkage Ratio (쇄교자속비를 이용한 3권선 변압기 보호)

  • 강용철;이병은;김은숙;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.375-381
    • /
    • 2004
  • This paper describes a three-winding transformer protective relaying algorithm based on the ratio of increments of flux linkages (RIFL). To minimize the approximation errors, the algorithm uses integration approximation. The RIFL of the two windings is equal to the turns ratio for all operating conditions except for an internal fault. For a single-phase and three-phase transformer containing the wye-connected windings, the increments of flux linkages (IFL) are calculated. For a three-phase transformer containing the delta-connected windings, the difference of IFL between the two phases are calculated to use the line currents, because the winding currents are practically unavailable. Their ratios are compared with the turns ratio. The comparative study between the proposed and differential approximation methods was conducted. The test results show that the algorithm can reduce the errors resulting from the conventional methods.

A Study on the Transformer Design considering the Inrush Current Reduction in the Arc Welding Machine

  • Kim, In-Gun;Liu, Huai-Cong;Cho, Su-Yeon;Lee, Ju
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.374-378
    • /
    • 2016
  • The transformer used in an inverter type arc welding machine is designed to use high frequency in order to reduce its size and cost. Also, selecting core materials that fit frequency is important because core loss increases in a high frequency band. An inrush current can occur in the primary coil of transformer during arc welding and this inrush current can cause IGBT, the switching element, to burn out. The transformer design was carried out in $A_P$ method and amorphous core was used to reduce the size of transformer. In addition, sheet coil was used for primary winding and secondary winding coil considering the skin effect. This paper designed the transformer core with an air gap to prevent IGBT burnout due to the inrush current during welding and proposed the optimum air gap length.

Compensation of the secondary voltage of a three winding coupling capacitor voltage transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.18-20
    • /
    • 2007
  • A coupling capacitor voltage transformer (CCVT) is used in an extra high voltage power system to obtain the standard low voltage signal for protection and measurement. To suppress the effects of ferro-resonance more effectively, a three winding CCVT is used. This paper proposes an algorithm for compensating the secondary voltage of the three winding CCVT. With the secondary voltage of the three winding CCVT, the secondary and tertiary currents are obtained; the primary winding current is obtained by considering non-linear characteristics of the core; the voltage across the capacitor and the inductor are calculated and then added to the measured voltage to compensate the secondary voltage. Test results indicate that the algorithm can reduce the errors of the three winding CCVT significantly.

  • PDF

Design of a 33 MVA HTS Transformer with OLTC (OLTC를 고려한 33 MVA 초전도 변압기 설계)

  • Choi, J.H.;Lee, S.W.;Park, M.J.;Kim, W.S.;Choi, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.885-886
    • /
    • 2006
  • We have proposed a 100 MVA, 3 phases, 154 kV class HTS transformer which will substitute for 60 MVA conventional transformer. In this paper, we designed conceptually the structure of the superconducting windings of a single phase 33 MVA transformer. The power transformer of 154 kV class has a tertiary winding besides primary and secondary windings. So the HTS transformer should have the 3rd superconducting winding, it makes the cost of the HTS transformer high and the efficiency low. Further more we considered On Load Tap Changer (OLTC) in HTS power transformer. OLTC equipment is required for fitting to a power transformer by which the voltage ratio between the windings can be varied while the transformer is on load. We analyzed the electrical characteristics of the HTS transformer such as magnetic stress and AC loss.

  • PDF

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.