• Title/Summary/Keyword: 3-phase PWM converter

Search Result 234, Processing Time 0.023 seconds

Sensorless Control of Three-Phase PFC Converter Using State Observer (상태관측기를 이용한 3상 PFC 컨버터의 센서리스 제어)

  • Kim, Y.S.;Kim, G.T.;Park, S.J.;Jung, H.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.146-148
    • /
    • 2005
  • 3상 PWM 컨버터는 전원전압과 동일한 위상의 전류를 인가할 수 있도록 스위칭 소자를 사용하여 고효율, 고역률을 얻을 수 있으며, 계통전원의 안정화와 유도장애 해소 등의 장점을 가지고 있다. 그러나 PWM 컨버터는 전원전압과 동상의 입력전류를 얻기 위해서는 전원전압센서와 전류센서를 필요로 하고 DC 링크단을 제어하기 위해서도 부가적인 하드웨어 구성이 필요하다. 이러한 센서들은 고가이며 신호의 검출시 각종 노이즈와 외란의 영향으로 신뢰성의 저하가 우려되므로 센서의 제거가 요구되고 있다. 본 논문은 상태관측기를 이용하여 전원전압과 위상각을 추정하는 센서리스 제어를 제안하였으며 3상 PFC 컨버터를 구성하여 시뮬레이션과 실험을 수행한 결과 전원전압 추정과 단위역률이 잘 이루어짐을 확인할 수 있었다.

  • PDF

Resonant Link Bidirectional Power Converter without Electrolytic Link Capacitor (전해커패시터 업는 양방향성 공진형 컨버터)

  • 최종우;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.936-945
    • /
    • 1994
  • This paper proposes a new power converter which consists of two identical 3-phase PWM modulators and a novel resonant circuit. A new control strategy is integrated to realize the bidirectional power converter without an electrolytic link capacitor. The power flow between converters is bidirectional and the regenerative braking is inherent. The source side currents maintain sinusoidal waveforms with a unity power factor. It is observed in the experiment that by balancing the active power between the source and load side, the voltage across a small ceramic link capacitor can be maintained within a small deviation from the reference. Simulation results and experimental results are presented to verify the operational principles.

Parallel Control Method of 3-Phase AC/DC PWM Converter using DC Current Droop Control for DC Distribution (DC배전용 직류전류 드룹제어를 이용한 3상 AC/DC PWM컨버터의 병렬제어기법)

  • Park, Yun-Wook;Shin, Soo-Cheol;Lee, Hee-Jun;Kim, Young-Ryeol;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.14-15
    • /
    • 2013
  • 본 논문에서는 컨버터의 병렬운전을 하는데 있어 제안한 드룹제어를 사용하여 전력을 분담한다. 제안한 방법을 이용하면 직류배전에서 병렬시스템의 용량증설을 용이하게 할 수 있다. 기존의 교류전원에서 사용하는 드룹 제어 방법을 새롭게 개선하여 직류전원에서 드룹 제어가 적용되도록 드룹 제어기를 설계한다. 그리고 제안한 드룹 제어기의 제어방법을 상세히 설명한다. 본 논문에서는 제안한 제어방법을 50[kW] 직류배전 시스템에 적용하여 시뮬레이션을 통하여 제안된 기법의 타당성을 검증한다.

  • PDF

The Load Current Observer Design for Torque Control of DC Meter (직류 전동기의 속도 토크 제어를 위한 부하 전류 관측기 설계)

  • Seo Young-Soo;Kim Eun-Gi;Kim Yong-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.155-158
    • /
    • 2001
  • In this paper, the Load Current Observer Design for 3-phase Voltage Type PWM Converter with DC Meter Load. The sinusoidal input current and unity input power factor are realised based on the estimated source voltage performed by the Load Current Observer using actual currents and DC link voltage.

  • PDF

An SCR Thyristor Based Three-Phase Voltage Disturbance Generator

  • Han, Heung-Soo;Jung, Jae-Hun;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.372-378
    • /
    • 2012
  • This paper deals with a 3-phase voltage disturbance generator for a performance test of custom power devices such as dynamic voltage restorers (DVR), dynamic uninterruptable power supplies (UPS), etc. The operating principle of the proposed circuit is described in each mode of voltage sag, swell, outage, and unbalance. The main components of the proposed disturbance generator are silicone controlled rectifier (SCR) thyristors, variable autotransformers, and transformers. Therefore, the disturbance generator can be implemented with a considerably low cost compared to the conventional pulse width modified (PWM) inverter and converter type generators. Furthermore, it has good features of high reliability with simple structure, high efficiency caused by no PWM switching of the SCR thyristors, and easy control with a wide variation range. To verify the validity of the proposed scheme, simulations and experiments are carried out.

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

Response Characteristics Effectiveness of Power Converter According to Using of Error Compensator for PV Power System (태양광 전력설비를 위한 오차 보상기 사용의 전력변환기기에 대한 응답특성의 효과 검증)

  • Kim, Dong-Eun;Lee, Hyun-Jae;Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1388-1394
    • /
    • 2018
  • In this paper, the improvement of the control response by using the error compensator to improve the stability of the control in the power conversion system is verified. Typically a closed loop control method is used to improve the control response characteristics in a traditional power conversion system and this is accomplished by generating a PWM waveform. In this paper, the newly constructed Type3 compensator to overcome the existing such as PI controller or Type2 compensator has been developed to improve the control stability of these closed loop control systems and the effectiveness of the use of error compensation devices was verified by presenting technique to improve stability and select its parameters by expanding the range of phase gains. Stability improvements are shown by the extension of the phase gain range and parameter selection techniques and the effects of using the error compensation device are verified accordingly.

A NEW CONTROL METHOD FOR CURRENT SHARING IN THE 12-PULSE PHASE-CONTROLLED RECTIFIER

  • Min, Byoung-Gwon;Baek, Byung-San;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.581-585
    • /
    • 1998
  • This paper presents the new current sharing control method of a 12-pulse phase-controlled rectifier(PCR) for a UPS. The control circuit of the 12-Pulse PCR with a parallel operating rectifier system is proposed to balance input currents and to reduce the harmonics of input current. The PCR is used widely in the industrial world, since its cost is much lower than that of the PWM converter and the composition of control circuits is simple. This system is developed and tested for a 3-phase 400KVA UPS system and the experimental results in this application are included.

  • PDF

Improved Pre-charging Method for MMC-Based HVDC Systems Operated in Nearest Level Control

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.127-135
    • /
    • 2017
  • Recently the researches on modular multi-level converter (MMC) are being highlighted because high quality and efficient power transmission have become key issues in high voltage direct current (HVDC) systems. This paper proposes an improved pre-charging method for the sub-module (SM) capacitor of MMC-based HVDC systems, which operates in the nearest level control (NLC) modulation and does not need additional circuits or pulse width modulation (PWM) techniques. The feasibility of the proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 SMs per each arm. Hardware experiments with a scaled prototype have also been performed in the lab to confirm the simulation results.

Improvement measures for power quality of DC distribution (직류배전의 전력품질 향상 대책)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.536-537
    • /
    • 2010
  • If DC voltage adjustment can be controlled very easily, it is much more effective rather than AC in transmission efficiency. The main reason why DC is more effective than AC, DC has the same role as the 70[%] of AC whenever the same power send. In addition, AC streams the surface of electrical wire, but DC streams overall of electrical wire. Digital load, which is operated by DC, has increased in modern times. The step of convert of AC-DC has to be reduced. When we turn the dispersed AC-DC converters into the concentrated AC-DC converter, it can improve the effective of the whole system. Further more, if digital society develops more than now and the time of electric vehicle comes, the need of DC will increase much more than these days. This paper suggests that DC output of distributed power source and high efficient 3 phase PWM converter can control the adjustment of output voltage, harmonic restraint, power factor improvement and dump power.

  • PDF