• Title/Summary/Keyword: 3-octylthiophene

Search Result 9, Processing Time 0.044 seconds

Emitting characteristics of poly(3-octylthiophene) electroluminescent devices (Poly(3-octylthiophene) 전계발광소자의 발광특성)

  • Seo, Bu-Wan;Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.131-134
    • /
    • 2000
  • Electroluminescent[EL] from conjugated polymers has recently received great attention because polymer light-emitting diodes[LEDs] clearly have potential for applications such as large-area displays. The operation of polymer LEDs is based on double injection of electrons and holes from the electrodes, followed by formation of excitons whose radiative decay results in light emission at wavelength characteristic to the material In this paper, we fabricated the single layer EL device using poly(3-octylthiophene)[P3OT] as emitting material. The orange-red light was clearly visible in a dark room Maximum peak wavelength of EL spectrum saw at 640nm in accordance with photon energy 1.9eV. And we know that ionization energy of P3OT is 4.7eV from the cyclic voltammetry.

  • PDF

Synthesis and Characteristic of Polythiophene Containing Electron Withdrawing Group (Electron Withdrawing Group을 함유한 Polythiophene의 합성과 특성에 관한 연구)

  • Hong, Hyeok-Jin;Han, Sien-Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.539-545
    • /
    • 2012
  • 3-(2-benzotriazolovinyl)thiophene (BVT) was synthesized by the connection of the thiophene with the electron-withdrawing group, benzotriazole, through the vinylene. Its structure was confirmed by FT-IR, $^1H$-NMR, $^{13}C$-NMR and 2D hetero-cosy spectroscopy. Both BVT and 3-octylthiophene (OT) were copolymerized and showed an average molecular weight of 12000 (PDI 2.67) and 15000 (PDI 2.55), respectively. The copolymers were dissolved in the organic solvent such as chloroform, THF, TCE, etc. The mole ratios of BVT and OT in the synthesized copolymers were confirmed as 1 : 1.8 and 1 : 2.8 from $^1H$-NMR spectra. The UV-vis maximum absorption of copolymers appeared at the wavelength of 470 nm and 465 nm and the photoluminescence at ${\lambda}_{max}$ = 662 nm and 641 nm correspond to red-orange light. The band gaps of copolymers at 1.96 eV and 2.02 eV were found to be higher than those of poly(3-octylthiophene). The HOMO energy levels of the copolymers decreased overall in comparison with those of poly(3-octylthiophene), but the overall LUMO energy level increased.

The Electrodeposition on Carbon Materials with In Situ Electrochemical Polymerization of 3-Octylthiophene (3-옥틸티오펜의 전기화학적 중합법에 의한 탄소재료의 표면 전착)

  • Jeon, Jae-Sook;Kim, Jeong-Jae;Lee, Kyung-Woo;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.511-516
    • /
    • 2010
  • The electrochemical coating of poly(3-octylthiophene) on carbon materials was studied in order to investigate the application possibility of the modified carbon materials in the photoelectronic devices. Commercial carbon paper and carbon fiber were used as substrate electrodes for electrochemical coating. The coating behaviors were analysed with the variation of monomer and electrolyte concentration, applied potential, and cycling number in cyclovoltammetry. The coating rate of poly(3-octylthiophene) formed on the substrate were proportional to the monomer and electrolyte concentration, applied potential, and cycling number with each independent exponent. The structure and morphology of electrochemically polymerized poly(3-octylthiophene) was investigated with scanning electron microscopy and FTIR reflectance measurement.

The Blending Effect of Electro-deposited Copper-indium-diselenide Particles on the Photovoltaic Properties of Poly(3-octylthiophene)/Fullerene Bulk Heterojunction Cells (폴리(옥틸티오펜)/풀러렌 벌크 이종접합의 광기전성에 미치는 CIS 입자의 블렌딩 효과)

  • Cho, Young-Don;Lee, Sun-Hyoung;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.84-87
    • /
    • 2010
  • Copper-indium-diselenide (CIS) particles were prepared by the electrochemical reduction from the mixture solution of corresponding ion compounds. The prepared CIS was used as an insertion layer or a blending component in the organic photovoltaic bulk heterojunction cells composed of poly(3-octylthiophene) and fullerene. The increase of CIS content resulted in the rapid decrease of the open-circuit voltage as well as short-circuit current. The photovoltaic parameters were analyzed in relation to the structures, composition, and morphology of the photovoltaic blends.

Change in Opto-electrical Characteristics in Poly[3-octylthiophene-co-3-(4-fluorophenyl)thiophene] according to the Copolymerization Ratio (Poly[3-octylthiophene-co-3-(4-fluorophenyl)thiophene]에서 공중합 비율에 따른 전기 광학적 특성의 변화)

  • 신선호;정애영;김주현;이후성;김동표
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.399-405
    • /
    • 2001
  • Poly[3-octylthiophene-co-3-(4-fluorophenyl)thiophene]s were synthesized in 2:1, 1:1, and 1:2 mole ratios, and organic electroluminescent devices were fabricated using the copolymers. The opto-electrical properties of the copolymers were studied by PL, EL spectra, I-V, and V-L curves of the organic electroluminescent devices in conjunction with the energy band diagrams which were obtained from the cyclic voltammogram and the electronic absorption spectra. The LUMO energy level of P(OT/FPT)(1:1) is the lowest as -3.35 eV. In the copolymers P(OT/FPT)(2:1) and P(OT/FPT)(1:1) the ${\lambada}_{max}$ in the PL and EL spectra red-shifted as the mole ratio of fluorophenyl group increased while in P(OT/FPT)(1:2) it showed a blue-shift. This indicates that the backbone chain is twisted due to the steric hinderance of the fluorophenyl group leading to shorter ${\pi}$-conjugation length. P(OT/FPT)(1:1) showed the highest EL intensity and the highest power efficiency among the three copolymers. In P(OT/FPT)(1:2) the roughness of the film surface causes unusually high local leakage current leading to the low efficiency of electroluminescence.

  • PDF

Electrospinning of poly(vinylidene fluoride) with carbon nanotubes (Carbon nanotube를 포함한 PVDF/DMF 용액의 전기방사)

  • Kim, Yong-Tae;Chang Seoul;Zheng, Hai-Lan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.183-186
    • /
    • 2002
  • Polymer composites with carbon nanotubes have recently been investigated for improving certain properties i.e., electrical, optical and mechanical properties[1-3]. Kymakis et. al. have reported the electrical and optical properties of single wall carbon nanotube-poly(3-octylthiophene) composites[4]. Polyurethane dissolved in dimethylformanide (DMF) were electrospun by Demir et. al.[5]. (omitted)

  • PDF

Emitting characteristics with alkyl side chain introduced at poly(3-alkylthiophene) electroluminescent devices (Poly(3-alkylthiophene) 전계발광소자에 도입된 alkyl side chain의 길이에 따른 발광특성)

  • Seo, Bu-Wan;Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.143-146
    • /
    • 2000
  • We studied effects of alkyl($C_nH_{2n+1}$) chain length on characteristics of poly(3-alkylthiophene) electroluminescent diodes. Among the poly(3-alkylthiophene), poly(3-hexylthiophene)(n=6) and poly(3- octyIthiophene)(n=8) were mainly used for the emitting layer of the diode. The result of experiment, the emission intensity of poly(3-alkylthiophene) electroluminescent diodes depends on the alkyl chain length. Strong emission is obtained from a poly(3-alkylthiophene) diodes of long alkyl side chain length. Emission intensities are enhanced by a confinement of carriers on a main chain with a long interchain distance caused by a long alkyl side chain.

  • PDF

Electrical and Optical Properties of Substituted Heterocyclic Conducting Polymers (치환 복소환 도전성 고분자의 전기.광학적 성질)

  • ;;;Katsumi Yoshino
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.91-98
    • /
    • 1991
  • Electrical conductivity of poly (3-alkylthiophene) derivatives with substituted long alkyl chain such as poly (3-butylthiophene), poly (3-hexylthiophene), poly (3-octylthiophene), poly (3-decylthiophene), poly (3-dodecylthiophene), and poly (3-docosylthiophene) increases with increasing temperature. However, after attaining a maxiumum value, it decreases with further temperature increase. Hysteresis is also observed in the temperature dependence of conductivity and absorption spectra. The absorption spectra also changes rapidly at the phase transition. These phenomena are discussed in terms of the increase of the energy band gap in the liquid states due to the decrease of co-planarity of thiophene rings accompanied by remarkable conformation changes.

Optical Properties of Conducting Polymer Poly(3-Alkylthiophene) Solution (도전성 고분자 Poly( 3- Alkylthiophene ) 용액의 광학적 성질)

  • Park, J.H.;SaGong, G.;Lim, J.S.;Kim, T.S.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.221-223
    • /
    • 1990
  • In this study, we have studied the optioal properties and $I_2$ doping effect of Poly(3-Akkylthiophene) solution. The end of speotrum absorbance on the solutions of Poly(3 - Octylthiophene), Poly (3-Dodecylthiophene) and Poly(3-Dooooylthiophene) was dependent on temperature. It is bellved that conrod-coil transition dependent on temperature was rod-coil transition. And absortance peak of Poly (3-Dodecylthiophene) in dichloromethane solution increased with increasing the $I_2$ dopant.

  • PDF