• Title/Summary/Keyword: 3-level AC/DC converter

Search Result 43, Processing Time 0.026 seconds

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

Feedforward Compensation Method of Output Voltage with 3Phase AC/DC PWM Converter on DC Distribution System for Improved Response (응답성 향상을 위한 직류배전용 3상 AC/DC PWM 컨버터 출력전압 전향보상 기법)

  • Choi, Hyeong-Jun;Lee, Chun-Bok;Hong, Seok-Jin;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.516-517
    • /
    • 2015
  • This paper proposes the feedforward compensation method of output voltage with 3phase AC/DC PWM converter on DC distribution system for improved response. AC/DC PWM converter on DC distribution is required power supply of high quality because of renewable energy sources and load links. In general, Feedforward compensation method of 3phase AC/DC PWM converter receives the sensor input to the output current, load power. Resulting, error of the sensing values and communication cause time delay. Therefore, Feedforward compensation method through only the output voltage is proposed in this paper. The feedforward compensation method through only the output voltage can be applied to the two-level AC/DC PWM converters, as well as multi-level converter or inverter.

  • PDF

THREE LEVEL SINGLE-PHASE SINGLE STAGE AC/DC RESONANT CONVERTER WITH A WIDE OUTPUT OPERATING VOLTAGE RANGE (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Lee, G.W;Kim, M.J;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.434-435
    • /
    • 2018
  • In this paper, a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage is presented. It integrates a PFC converter and a three level DC/DC converter into one. The proposed converter operates at a fixed frequency and provides a wide controllable output voltage ($200V_{dc}-430V_{dc}$) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. Moreover, all the switching devices operate with ZVS, and the converter's THD is small especially at full load. The feasibility of the proposed converter is verified with experimental results of a 1.5kW prototype.

  • PDF

Model Predictive Control of Bidirectional AC-DC Converter for Energy Storage System

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.165-175
    • /
    • 2015
  • Energy storage system has been widely applied in power distribution sectors as well as in renewable energy sources to ensure uninterruptible power supply. This paper presents a model predictive algorithm to control a bidirectional AC-DC converter, which is used in an energy storage system for power transferring between the three-phase AC voltage supply and energy storage devices. This model predictive control (MPC) algorithm utilizes the discrete behavior of the converter and predicts the future variables of the system by defining cost functions for all possible switching states. Subsequently, the switching state that corresponds to the minimum cost function is selected for the next sampling period for firing the switches of the AC-DC converter. The proposed model predictive control scheme of the AC-DC converter allows bidirectional power flow with instantaneous mode change capability and fast dynamic response. The performance of the MPC controlled bidirectional AC-DC converter is simulated with MATLAB/Simulink(R) and further verified with 3.0kW experimental prototypes. Both the simulation and experimental results show that, the AC-DC converter is operated with unity power factor, acceptable THD (3.3% during rectifier mode and 3.5% during inverter mode) level of AC current and very low DC voltage ripple. Moreover, an efficiency comparison is performed between the proposed MPC and conventional VOC-based PWM controller of the bidirectional AC-DC converter which ensures the effectiveness of MPC controller.

Analysis of Step-up AC/DC Converter (승압형 AC/DC 전력 변환기의 해석)

  • Park, S.Y.;Park, I.G.;Kang, Y.S.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.340-343
    • /
    • 1990
  • Recently, Power Electronics system increase makes harmonics and low input power factor problem. In this paper present new analysis method of PWM Boost AC/DC Converter. This PWM AC/DC Converter is capability of unity power factor, control of DC side voltage level, generation, and near sinusoidal current in 3-phase line. The control of this type of converter is widely discussed. And this paper propose new phase convert function and analysis in steady state of system to obtain amplitude and phaser of switching function. This switching function is general solution and it can use in high power approach. And this control method show the clear meaning of control variable. This paper propose new analysis method of Boost AC/DC Converter of steady state and 3-phase 2KW experimental system show its validity.

  • PDF

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.

Design of Multilevel Variable Output Voltage AC-DC Converter for Power Amplifier of Underwater Acoustic Sensor (수중 음향센서용 전력증폭기를 위한 멀티레벨 가변전압출력 AC-DC 전원회로 설계)

  • Lee, Chang-Yeol;Kim, In-Dong;Nho, Eui-Cheol;Moon, Won-Kyu;Kim, Won-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.72-83
    • /
    • 2013
  • The paper proposes a new multilevel variable output voltage AC/DC Converter for power supply of power amplifiers used in underwater acoustic sensors. The proposed multilevel variable output voltage AC/DC Converter is composed of two parts. One as the input section is the high efficiency phase-shifted PWM full bridge DC-DC converter to get multiport power sources. The other as the output section is composed of two flying-capacitor 3-level DC-DC converters and a diode bridge circuit to get fast-response and multilevel variable output voltage for an envelope amplifier. Also the paper suggests the detailed circuit topology and design guideline of multilevel variable output voltage AC/DC converter. It also proposes the power balanced control method between 3-level converters and the voltage balanced algorithm for flying capacitors. Its characteristics should be verified by the detailed simulation results. It is anticipated that the proposed converter will be used very well for power amplifiers used in underwater acoustic sensors.

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

Hybrid Control of PI and Model Predictive for 3-Level NPC AC/DC PWM Converter (3-Level NPC AC/DC PWM 컨버터를 위한 PI 및 모델에측 혼합제어)

  • Kang, Kyung-Min;Hong, Seok-Jin;Hyun, Seung-Wook;Kang, Jin-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.505-506
    • /
    • 2016
  • 본 눈문에서는 대전력 및 고전압 전력변환에 적용되는 3-Level NPC AC/DC PWM 컨버터의 출력 DC 전압의 전체적인 특성 향상을 위하여 PI제어와 모델예측제어의 혼합제어 기법을 제안한다. 혼합제어를 위하여 3-Level AC/DC PWM 컨버터를 모델링하고, PSIM 시뮬레이션을 통하여 제안한 혼합제어 기법의 제어성능을 검토하였다.

  • PDF

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF