• Title/Summary/Keyword: 3-dimensional flow model

Search Result 963, Processing Time 0.025 seconds

Optical Flow Estimation of a Fluid Based on a Physical Model

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.539-544
    • /
    • 2009
  • An estimation of 3D velocity field including occluded parts without maxing tracer to the fluid had not only never been proposed but also impossible by the conventional computer vision algorithm. In this paper, we propose a new method of three dimensional optical flow of the fluid based on physical model, where some boundary conditions are given from a priori knowledge of the flow configuration. Optical flow is obtained by minimizing the mean square errors of a basic constraint and the matching error terms with visual data using Euler equations. Here, Navier-Stokes motion equations and the differences between occluded data and observable data are employed as the basic constrains. we verify the effectiveness of our proposed method by applying our algorithm to simulated data with partly artificially deleted and recovering the lacking data. Next, applying our method to the fluid of observable surface data and the knowledge of boundary conditions, we demonstrate that 3D optical flow are obtained by proposed algorithm.

Numerical investigation of the effect of the location of stern planes on submarine wake flow

  • Beigi, Shokrallah M.;Shateri, Alireza;Manshadi, Mojtaba D.
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.289-316
    • /
    • 2020
  • In the present paper, the effect of the location of stern planes on the flow entering the submarine propeller is studied numerically. These planes are mounted on three longitudinal positions on the submarine stern. The results are presented considering the flow field characteristics such as non-dimensional pressure coefficient, effective drag and lift forces on the stern plane, and the wake flow formed at the rear of the submarine where the propeller is located. In the present study, the submarine is studied at fully immersed condition without considering the free surface effects. The numerical results are verified with the experimental data. It is concluded that as the number of planes installed at the end of the stern section along the submarine model increases, the average velocity, width of the wake flow and its turbulence intensity formed at the end of the submarine enhance. This leads to a reduction in the non-uniformity of the inlet flow to the propulsion system.

Three-Dimensional Numerical Analysis of Surface Buoyant Jets (표층밀도분류의 3차원 수치해석)

  • 허재영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.152-162
    • /
    • 1991
  • A three-dimensional numerical model with free water surface was established to investigate flow characteristics of surface buoyant jets and river plumes. Turbulent shear stresses and turbulent buoyancy fluxes were expressed in terms of the eddy viscosities and diffusivities. Stable stratification effects due to density difference between discharged water and receiving ambient water were taken into with empirical formulae. Through a comparison of numerical results with published experimental data the validity of the model was shown and the optimal stratification functions was determined The three-dimensional spreading characteristics were examined and the effects of inlet densimetric Froude number, inlet aspect ratio and water surface elevation on the flow development were discussed.

  • PDF

Secondary flows through an impeller of centrifugal compressor at design and off-design conditions (설계점 및 탈설계점에서의 원심압축기 회전차 내부 2차유동)

  • Choe, Yeong-Seok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3573-3588
    • /
    • 1996
  • The flow through a centrifugal compressor impeller was calculated using the 3-dimensional Navier-Stokes solution method. A control volume method based on a rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. Numerical results and experimental data were compared for the overall performance of the impeller, the pressure distributions along the shroud wall and the detailed flowfields at the design and off-design conditions, which showed good coincidence. The flow through the impeller is complex with the curvature of the streamlines and rotation. The development of secondary flows and the jet-wake flow characteristics, which is the main source of flow loss, was discussed. Calculation results show quite different patterns as the flow rate changes.

Intake-Air Flow and Distribution Characteristics of the Gasoline Engine Intake-Manifold (가솔린엔진 흡기매니폴드의 흡기유량 및 분배특성)

  • Yeom, Kyoung-Min;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4718-4725
    • /
    • 2011
  • Intake-air flow and distribution characteristics of the 1600cc gasoline engine intake manifold have been studied using the computer simulation. Simulation has been conducted using both one-dimensional performance simulation and three-dimensional CFD software. Steady state flow simulation result of the intake manifold shows good distribution characteristics that the standard deviation of flow coefficients is below 1.0 percentage for both one- and three-dimensional simulation. Even though one-dimensional simulation result slightly overestimates compared with three-dimensional simulation result, both results show very good agreement in flow coefficient trend. Also, unsteady state simulation result shows consistent distribution characteristics with that of steady state. It is shown that unsteady state distribution characteristics might be able to be predicted through the steady state mass distribution result.

A Study on the Local Dynamic Characteristics of High Temperature Proton Exchange Membrane Fuel Cell by Quasi-three-dimensional Model (고온형 고분자전해질 연료전지의 준3차원 모델링을 통한 국부적 동특성 해석에 관한 연구)

  • Park, Jaeman;Min, Kyoungdoug;Kang, Sanggyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.1-81.1
    • /
    • 2011
  • High temperature proton exchange membrane fuel cell (HT-PEMFC) has been regarded as a promising clean energy sources. In this study, a quasi-three-dimensional dynamic model of HT-PEMFC has been developed and the local dynamic characteristics are investigated. The model has the geometrical simplification of 2+1D reduction (quasi-3D). The one-dimensional model consists of nine control volumes in cross-sectional direction to solve the energy conservation and the species conservation equations. Then, the one-dimensional model is discretized into 25 local sections along the gas flow direction to account for gas and thermal transport in channels. With this discretization, the local characteristics of HT-PEMFC such as species conservation, temperature, and current density can be captured. In order to study the basic characteristics of HT-PEMFC, it is important to investigate the local dynamic characteristics. Thus, the model is simulated at various operating conditions and the local dynamic characteristics related to them are observed. The model is useful to investigate the distribution of HT-PEMFC characteristics and the physical phenomena in HT-PEMFC.

  • PDF

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

Effective Strength of 3-Dimensional Concrete Strut (3차원 콘크리트 스트럿의 유효강도)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.403-413
    • /
    • 2014
  • For the reliable design of the structural concrete by the strut-tie model approaches of current design codes, the effective strengths of concrete struts must be determined with sufficient accuracy. Many values and equations for the effective strengths have been suggested until now. As those are for the two-dimensional concrete struts, however, it is inappropriate to employ them in the strut-tie model designs of three-dimensional structural concretes. In this study, an approach, that determines the effective strengths of three-dimensional concrete struts consistently and accurately by reflecting the state of 3-dimensional stresses, the 3-dimensional failure criteria of concrete, the degree of cracks (or tensile strains of reinforcing bars crossing the struts), the strut's longitudinal length, the deviation angle between strut orientation and compressive principal stress flow, compressive strength of concrete, and the degree of concrete confinement by reinforcing bars, is proposed. To examine the validity of the proposed approach, the ultimate strength analyses of 115 reinforced concrete pile caps tested to failure by previous investigators were conducted by the ACI 318-11's strut-tie model approach with the existing and proposed effective strengths of concrete struts.

Prediction of Water-Quality Enhancement Effects of Gates Operation in the West-Nakdong River Using RMA2/RMA4 Models (RMA2/RMA4 모형을 이용한 서낙동간 수문연계운영의 수질개선 효과 예측)

  • Lee, Keum-Chan;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.971-981
    • /
    • 2009
  • An objective of this study is as follows: 1) performing sensitivity analysis and parameter estimation of RMA2 and RMA4 models for the West-Nakdong River, 2) drawing up alternatives of gates-operation for water-quality enhancement, and 3) quantitative evaluation of methodology of 'flow-restoration by gates-operation' among 'Comprehensive Plan Improving Water-Quality in the West-Nakdong River(WNR)' with the target water-quality(BOD at Nakbon-N point: below 4.3 mg/L). The parameters for the RMA2 (depth-averaged two-dimensional flow model) and RMA4 (depth-averaged two-dimensional water-quality model) were determined by sensitivity analysis. Result of parameter estimation for RMA2 and RMA4 models is $1,000\;Pa{\cdot}s$ of the eddy viscosity, 20 of the Peclet number, 0.025 of the Manning coefficient, and $1.0\;m^2/s$ of the diffusion coefficient. We have evaluated the effects of water-quality enhancement of the selected alternatives by numerical simulation technique with the models under the steady-state flow condition and the time-variant transport condition. Because of no-resuspension from river bottom and considering BOD as conservative matter, these simulation results slightly differ from real phenomena. In the case of $50\;m^3/s$ of Daejeo-gate inflow, two-dimensional flow pn results result represents that small velocity occurs in the Pyungkang Stream and no flow in the Maekdo River. In the WNR, there occurs the most rapid flow near timhae-bridge. In the WNR, changes of water-quality for the four selected simulation cases(6, 10, 30, $50\;m^3/s$ of the Daejeo-gate inflow) were predicted. Since the Daejeo-Gate and the Noksan-Gate can be opened up to 7 days, it would be found that sustainable inflow of $30\;m^3/s$ at the Daejeo-gate makes BOD in the WNR to be under the target of water-quality.

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.