• 제목/요약/키워드: 3-dimensional flow model

검색결과 963건 처리시간 0.029초

Development of a one-dimensional system code for the analysis of downward air-water two-phase flow in large vertical pipes

  • Donkoan Hwang;Soon Ho Kang;Nakjun Choi;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.19-33
    • /
    • 2024
  • In nuclear thermal-hydraulic system codes, most correlations used for vertical pipes, under downward two-phase flow, have been developed considering small pipes or pool systems. This suggests that there could be uncertainties in applying the correlations to accident scenarios involving large vertical pipes owing to the difference in the characteristics of two-phase flows, or flow conditions, between large and small pipes. In this study, we modified the Multi-dimensional Analysis of Reactor Safety KINS Standard (MARS-KS) code using correlations, such as the drift-flux model and two-phase multiplier, developed in a plant-scale air-inflow experiment conducted for a pipe of diameter 600 mm under downward two-phase flow. The results were then analyzed and compared with those based on previous correlations developed for small pipes and pool conditions. The modified code indicated a good estimation performance in two plant-scale experiments with large pipes. For the siphon-breaking experiment, the maximum errors in water flow for modified and original codes were 2.2% and 30.3%, respectively. For the air-inflow accident experiment, the original code could not predict the trend of frictional pressure gradient in two-phase flow as / increased, while the modified MARS-KS code showed a good estimation performance of the gradient with maximum error of 3.5%.

Onset of Slugging Criterion Based on Singular Point and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations of Two-Fluid Model

  • Sung, Chang-Kyung;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.299-310
    • /
    • 1996
  • A two-step approach has been used to obtain a new criterion for the onset of slug formation : (1) In the first step, a more general expression than the existing models for the onset of slug flow criterion has been derived from the analysis of singular points and neutral stability conditions of the transient one-dimensional two-phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple criterion for the onset of slug flow has been derived. Comparisons of the present model with existing models and experimental data show that the present model agrees very closely with Taitel & Dukler's model and experimental data in horizontal pipes. In an inclined pipe ($\theta$ =50$^{\circ}$), however, the difference between the predictions of the present model and those of existing models is appreciably large and the present model gives the best agreement with Ohnuki et al.'s data.

  • PDF

Stereoscopic micro-PTV기법의 개발 (Development of Stereoscopic Micro-PTV Method)

  • 유청환;김형범
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.109-113
    • /
    • 2007
  • Micro-PIV is a well-known method for measurement of two- dimensional, two-component velocity in the microfluidic devices. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is helpful to understand the physics of micro flow phenomena. In this study, we developed new micro 3D measurement method by applying 2-frame PTV in stereoscopic micro system. In this study, we did the validation study of SMPTV by using the simulated flow model to verify the accuracy and the feasibility of measurement and compared with SMPIV method. The results showed that SMPTV provides better spatial resolution and measurement accuracy than SMPIV method.

  • PDF

FLOW-3D를 이용한 우이천의 홍수특성 분석 (Analysis of the flood Characteristics in the Woo-Ee Stream Using FLOW-3D)

  • 윤선권;문영일;김종석;오근택;이수곤
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.603-607
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze one dimension or two dimension stream flow of domestic rivers that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed three dimensional numerical analysis for correct stream flow interpolation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimension RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-{\backepsilon}$, RNG $k-{\backepsilon}$ and LES. Those numerical analysis results have been illustrated to bends and junctions by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows.

  • PDF

유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석 (Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion)

  • 조종철;김윤일;최석기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

오탁방지막이 설치된 3차원 흐름 수치모델 (Three-Dimensional Numerical Model for Flow with Silt Protector)

  • 홍남식;김가야;강윤구
    • 한국해양공학회지
    • /
    • 제22권3호
    • /
    • pp.1-7
    • /
    • 2008
  • In this study, a mathematical model for flaw with silt protector is proposed that adds a second-order energy loss term in the momentum equation. The three-dimensional numerical model was developed based on mathematical models and verified through comparison with flume test results. Loss coefficients were evaluated through the flume tests and applied to the numerical model. It was found through the investigation of various example cases that the downstream flow pattern was affected mainly by penetration of the silt curtain, not by the approach velocity, and also that the blocking effect of velocity was increased by the increase in mesh density of the silt curtain, below a certain mesh density. The blocking effect did not increase further above a certain mesh density.

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.

3차원 대칭단면 유동장에서의 개선된 난류모델 (Improved Turbulence Model on the 3 Dimensional Plane of Symmetry Flow)

  • 손창현
    • 한국전산유체공학회지
    • /
    • 제2권2호
    • /
    • pp.1-8
    • /
    • 1997
  • Two versions of anisotropic k-ε turbulence model are incorporated in the modified k-ε model of Sohn et al. to avoid the need for the experimental normal stress value in the model and applied to convergent and divergent flows with strong and adverse pressure gradients in the plane of symmetry of a body of revolution. The models are the nonlinear k-ε model of Speziale and the anisotropic model of Nisizima & Yoshizawa. All of the models yield satisfactory results for relatively complex flow on a plane-of-symmetry boundary layer. The results of the models are compared with those results of experimental normal stress value.

  • PDF

SNUFOAM을 이용한 2차원 선박단면 형상의 입수 충격에 대한 연구 (A STUDY ON WATER ENTRY OF TWO-DIMENSIONAL CROSS-SECTIONAL SHAPE USING SNUFOAM)

  • 장동진;최영민;최학규;이신형
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.55-63
    • /
    • 2016
  • Nowadays, large container ships are continually developed and that's why the bow and stern structural stability problems by slamming become a significant more and more. However, due to the complexity of slamming, it is difficult to consider those problems at the design stage. For this reason, we attempt numerical analysis through SNUFOAM by generating the bow and stern two-dimensional cross-sectional grid in WILS JIP experiment at KRISO. Unlike the conventional method for the computation time saving, by setting the inlet flow conditions referred to the model test, we analyzed the slamming without applying the grid deformation method. As a result, when the stern model, as in the previous studies, it was possible to obtain quantitatively the fluid impulse is close to the experimental results. When the bow model, we can found the change by the position of force sensors which are derived for the bulbous bow and obtained fluid impulse and flow shape at slamming similar to the model test.

GIS를 이용한 낙동강-금호강 합류부의 2차원 유한요소해석 (The 2D Finite Element Analysis in Nakdong-Kumho River Junction using GIS)

  • 황재홍;한건연;남기영;최승용
    • 한국지리정보학회지
    • /
    • 제12권3호
    • /
    • pp.21-34
    • /
    • 2009
  • 홍수 시 흐름은 기본적으로 2차원 흐름으로서 이 때 하천 흐름의 수위와 유속 분포는 1차원 하천 모형으로 적절한 결과를 도출하기 어렵다. 이에 본 연구에서는 GIS를 이용하여 낙동강의 합류점에 대한 2차원 유한요소망을 구축하고 RMA-2모형을 이용하여 모의를 수행하였다. 이를 위해 모형의 매개변수들이 해석결과에 미치는 영향을 검토하였으며, 모형의 적용성을 검토하기 위해 금호강 합류부에 대해 흐름해석을 실시하고 검증하였다. 또한 하천의 단면 변화에 따른 흐름변화를 판단하기 위하여 과거 단면과 최근 단면에 대해 모의를 실시하고 비교 검토하였다. 그 결과 합류부에 대한 2차원 모형의 적용성을 검증하고 단변변화의 영향이 수위에 미치는 영향을 확인하여, 향후 합류부 처리, 하구부 처리, 제방축조 등에 효율적으로 활용될 수 있을 것으로 판단된다.

  • PDF