• Title/Summary/Keyword: 3-dimensional CT

Search Result 585, Processing Time 0.029 seconds

Patients Setup Verification Tool for RT (PSVTS) : DRR, Simulation, Portal and Digital images (방사선치료 시 환자자세 검증을 위한 분석용 도구 개발)

  • Lee Suk;Seong Jinsil;Kwon Soo I1;Chu Sung Sil;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.100-106
    • /
    • 2003
  • Purpose : To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproduclbility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT). The utilization of this system is evaluated through phantom and patient case studies. Materials and methods : We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, porial and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT Images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. Results : The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT. The results show that the localization errors are 0.8$\pm$0.2 mm (AP) and 1.0$\pm$0.3 mm (Lateral) in the cases relating to the brain and 1.1$\pm$0.5 mm (AP) and 1.0$\pm$0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software Conclusions : A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproduclbility of the patients' setup in 3DCRT and IMRT. With adjustment of the completed GUI-based algorithm, and a good quality DRR image, our software may be used for clinical applications.

STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH (치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포)

  • Han, Sang-Un;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

Verification of Gated Radiation Therapy: Dosimetric Impact of Residual Motion (여닫이형 방사선 치료의 검증: 잔여 움직임의 선량적 영향)

  • Yeo, Inhwan;Jung, Jae Won
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.128-138
    • /
    • 2014
  • In gated radiation therapy (gRT), due to residual motion, beam delivery is intended to irradiate not only the true extent of disease, but also neighboring normal tissues. It is desired that the delivery covers the true extent (i.e. clinical target volume or CTV) as a minimum, although target moves under dose delivery. The objectives of our study are to validate if the intended dose is surely delivered to the true target in gRT and to quantitatively understand the trend of dose delivery on it and neighboring normal tissues when gating window (GW), motion amplitude (MA), and CTV size changes. To fulfill the objectives, experimental and computational studies have been designed and performed. A custom-made phantom with rectangle- and pyramid-shaped targets (CTVs) on a moving platform was scanned for four-dimensional imaging. Various GWs were selected and image integration was performed to generate targets (internal target volume or ITV) for planning that included the CTVs and internal margins (IM). The planning was done conventionally for the rectangle target and IMRT optimization was done for the pyramid target. Dose evaluation was then performed on a diode array aligned perpendicularly to the gated beams through measurements and computational modeling of dose delivery under motion. This study has quantitatively demonstrated and analytically interpreted the impact of residual motion including penumbral broadening for both targets, perturbed but secured dose coverage on the CTV, and significant doses delivered in the neighboring normal tissues. Dose volume histogram analyses also demonstrated and interpreted the trend of dose coverage: for ITV, it increased as GW or MA decreased or CTV size increased; for IM, it increased as GW or MA decreased; for the neighboring normal tissue, opposite trend to that of IM was observed. This study has provided a clear understanding on the impact of the residual motion and proved that if breathing is reproducible gRT is secure despite discontinuous delivery and target motion. The procedures and computational model can be used for commissioning, routine quality assurance, and patient-specific validation of gRT. More work needs to be done for patient-specific dose reconstruction on CT images.

Feasibility of Automated Detection of Inter-fractional Deviation in Patient Positioning Using Structural Similarity Index: Preliminary Results (Structural Similarity Index 인자를 이용한 방사선 분할 조사간 환자 체위 변화의 자동화 검출능 평가: 초기 보고)

  • Youn, Hanbean;Jeon, Hosang;Lee, Jayeong;Lee, Juhye;Nam, Jiho;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.258-266
    • /
    • 2015
  • The modern radiotherapy technique which delivers a large amount of dose to patients asks to confirm the positions of patients or tumors more accurately by using X-ray projection images of high-definition. However, a rapid increase in patient's exposure and image information for CT image acquisition may be additional burden on the patient. In this study, by introducing structural similarity (SSIM) index that can effectively extract the structural information of the image, we analyze the differences between daily acquired x-ray images of a patient to verify the accuracy of patient positioning. First, for simulating a moving target, the spherical computational phantoms changing the sizes and positions were created to acquire projected images. Differences between the images were automatically detected and analyzed by extracting their SSIM values. In addition, as a clinical test, differences between daily acquired x-ray images of a patient for 12 days were detected in the same way. As a result, we confirmed that the SSIM index was changed in the range of 0.85~1 (0.006~1 when a region of interest (ROI) was applied) as the sizes or positions of the phantom changed. The SSIM was more sensitive to the change of the phantom when the ROI was limited to the phantom itself. In the clinical test, the daily change of patient positions was 0.799~0.853 in SSIM values, those well described differences among images. Therefore, we expect that SSIM index can provide an objective and quantitative technique to verify the patient position using simple x-ray images, instead of time and cost intensive three-dimensional x-ray images.

Latarjet Operation for Anterior Shoulder Instability with Glenoid Bone Defect (관절와 골 결손을 동반한 견관절 전방 불안정증에 대한 Latarjet 술식)

  • Cho, Seung-Hyun;Cho, Nam-Su;Yi, Jin-Woong;Choi, Il-Hun;Kwack, Yoon-Ho;Rhee, Yong-Girl
    • Clinics in Shoulder and Elbow
    • /
    • v.12 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Purpose: We wanted to evaluate the clinical results of the Latarjet procedure for treating anterior shoulder instability combined with a glenoid bone defect. Materials and Methods: Between Oct. 2006 and May. 2007, fourteen patients underwent a Latarjet operation to treat their anterior shoulder instability combined with a glenoid bone defect. The mean follow-up period was 15 months (range: 12 to 19 months), and the average age at the time of surgery was 29.9-years-old (range: 19 to 44 years). There were 13 males and 1 female. Eight patients exhibited involvement of the right shoulder. The dominant arm was involved in 8 patients. Six patients had undergone a previous arthroscopic Bankart repair before their Latarjet operation and 2 patients had a history of seizure. Results: The average Rowe score improved from 51.8 to 80.2 with 9 excellent, 4 good, and 1 fair results. The average Korean shoulder score for instability improved from 61.6 to 82.1 postoperatively. The active forward flexion and external rotation at the side of the involved shoulder was an average of $8^{\circ}$ and $16^{\circ}$ less than that of the uninvolved shoulder. The muscle strength of the involved shoulder measured 78.7% in forward flexion and 82.5% in external rotation, as compared with that of the uninvolved shoulder. There was 1 case of dislocation, 1 transient subluxation, 2 fibrotic unions, 1 resorption of the transferred coracoid process, 1 intraoperative broken bone, 1 transient musculocutaneous nerve injury and 1 case of stiffness. Conclusion: The Latarjet procedure for treating anterior shoulder instability combined with a significant glenoid defect effectively restores function and stability through extending the articular arc at the expense of external rotation. We should be cautious to avoid or detect complications when performing coracoid transfer.