• Title/Summary/Keyword: 3-dimensional CT

Search Result 591, Processing Time 0.025 seconds

COMPARATIVE STUDY OF THREE-DIMENSIONAL RECONSTRUCTIVE IMAGES OF FACIAL BONE USING COMPUTED TOMOGRAPHY (전산화단층상을 이용한 안면골의 3차원재구성상의 비교 연구)

  • Song Nam-Kyu;Koh Kwang-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.2
    • /
    • pp.283-290
    • /
    • 1992
  • The purpose of this study was to evaluate the spatial relationship of facial bone more accurately. For this study, the three-dimensional images of dry skull were reconstructed using computer image analysis system and three-dimensional reconstructive program involved CT. The obtained results were as follows: 1. Three-dimensional reconstructive CT results in images that have better resolution and more contrast 2. It showed good marginal images of anatomical structure on both three-dimensional CT and computer image analysis system, but the roof of orbit, the lacrimal bone and the squamous portion of temporal bone were hardly detectable. 3. The partial loss of image data were observed during the regeneration of saved image data on three-dimensional CT. 4. It saved the more time for reconstruction of three-dimensional images using computer image analysis system. But, the capacity of hardware was limited for inputting of image data and three-dimensional reconstructive process. 5. We could observe the spatial relationship between the region of interest and the surrounding structures by three-dimensional reconstructive images without invasive method.

  • PDF

Semiautomatic Three-Dimensional Threshold-Based Cardiac Computed Tomography Ventricular Volumetry in Repaired Tetralogy of Fallot: Comparison with Cardiac Magnetic Resonance Imaging

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.102-113
    • /
    • 2019
  • Objective: To assess the accuracy and potential bias of computed tomography (CT) ventricular volumetry using semiautomatic three-dimensional (3D) threshold-based segmentation in repaired tetralogy of Fallot, and to compare them to those of two-dimensional (2D) magnetic resonance imaging (MRI). Materials and Methods: This retrospective study evaluated 32 patients with repaired tetralogy of Fallot who had undergone both cardiac CT and MRI within 3 years. For ventricular volumetry, semiautomatic 3D threshold-based segmentation was used in CT, while a manual simplified contouring 2D method was used in MRI. The indexed ventricular volumes were compared between CT and MRI. The indexed ventricular stroke volumes were compared with the indexed arterial stroke volumes measured using phase-contrast MRI. The mean differences and degrees of agreement in the indexed ventricular and stroke volumes were evaluated using Bland-Altman analysis. Results: The indexed end-systolic (ES) volumes showed no significant difference between CT and MRI (p > 0.05), while the indexed end-diastolic (ED) volumes were significantly larger on CT than on MRI (93.6 ± 17.5 mL/m2 vs. 87.3 ± 15.5 mL/m2 for the left ventricle [p < 0.001] and 177.2 ± 39.5 mL/m2 vs. 161.7 ± 33.1 mL/m2 for the right ventricle [p < 0.001], respectively). The mean differences between CT and MRI were smaller for the indexed ES volumes (2.0-2.5 mL/m2) than for the indexed ED volumes (6.3-15.5 mL/m2). CT overestimated the stroke volumes by 14-16%. With phase-contrast MRI as a reference, CT (7.2-14.3 mL/m2) showed greater mean differences in the indexed stroke volumes than did MRI (0.8-3.3 mL/m2; p < 0.005). Conclusion: Compared to 2D MRI, CT ventricular volumetry using semiautomatic 3D threshold-based segmentation provides comparable ES volumes, but overestimates the ED and stroke volumes in patients with repaired tetralogy of Fallot.

Comparison of Target Localization Error between Conventional and Spiral CT in Stereotactic Radiosurgery

  • Kim, Jong-Sik;Ju, Sang-Kyu;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • The accuracy of the target localization was evaluated by conventional and spiral CT in stereotactic radiosurgerv. Conventional and spiral CT images were obtained with geometrical phantom, which was designed to produce exact three-dimensional coordinates of several objects within 0.1mm error range. Geometrical phantom was attached by BRW headframe, intermediate head ring, and CT localizer. Twentv-seven slices of conventional CT image were scanned at 3 mm slice thickness. Spiral CT images were scanned at 3 mm slice thickness from the pitch value 1 to 3, and twenty-seven slices of image were obtained per each the pitch value. These CT images were transferred to a treatment planning system(X-knife, Radionics) by ethernet, Three-dimensional coordinates of these images measured from the treatment planning system were compared to known values of geometrical phantom. The mean localization error of the target localization of conventional CT was 1.4mm. In case of spiral CT, the error of the target localization was within 1.6mm from the pitch value 1 to 1.3, but was more than 30mm above the pitch value 1.5. In conclusion, as the localization error of spiral CT was increased in high pitch value compared to conventional CT, the application of spiral CT will be with caution in stereotactic radiosurgery.

  • PDF

A comparative study between data obtained from conventional lateral cephalometry and reconstructed three-dimensional computed tomography images

  • Oh, Suseok;Kim, Ci-Young;Hong, Jongrak
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.3
    • /
    • pp.123-129
    • /
    • 2014
  • Objectives: The aim of this study was to verify the concordance of the measurement values when the same cephalometric analysis method was used for two-dimensional (2D) cephalometric radiography and three-dimensional computed tomography (3D CT), and to identify which 3D Frankfort horizontal (FH) plane was the most concordant with FH plane used for cephalometric radiography. Materials and Methods: Reference horizontal plane was FH plane. Palatal angle and occlusal plane angle was evaluated with FH plane. Gonial angle (GA), palatal angle, upper occlusal plane angle (UOPA), mandibular plane angle (MPA), U1 to occlusal plane angle, U1 to FH plane angle, SNA and SNB were obtained on 2D cephalmetries and reconstructed 3D CT. The values measured eight angles in 2D lateral cephalometry and reconstructed 3D CT were evaluated by intraclass correlation coefficiency (ICC). It also was evaluated to identify 3D FH plane with high degree of concordance to 2D one by studying which one in four FH planes shows the highest degree of concordance with 2D FH plane. Results: ICCs of MPA (0.752), UOPA (0.745), SNA (0.798) and SNB (0.869) were high. On the other hand, ICCs of gonial angle (0.583), palatal angle (0.287), U1 to occlusal plane (0.404), U1 to FH plane (0.617) were low respectively. Additionally GA and MPA acquired from 2D were bigger than those on 3D in all 20 patients included in this study. Concordance between one UOPA from 2D and four UOPAs from 3D CT were evaluated by ICC values. Results showed no significant difference among four FH planes defined on 3D CT. Conclusion: FH plane that can be set on 3D CT does not have difference in concordance from FH plane on lateral cephalometry. However, it is desirable to define FH plane on 3D CT with two orbitales and one porion considering the reproduction of orbitale itself.

Comparison of the Usefulness of MDCT (Multidetective Computed Tomogram) in Facial Bone Fractures (안면부 골절 수술 전후 다중검출기 전산화 단층촬영의 효용성 비교)

  • Hong, Yoon Gi;Kim, Hyung Taek
    • Journal of Trauma and Injury
    • /
    • v.19 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • Purpose: In maxillofacial surgery, proper preoperative diagnosis is very important in achieving good postoperative results. Although conventional CT scans are useful for visual representations of fractures, they cannot provide direct guidance for reconstructing facial bone fractures. However, the recent technology of multislice scanning has brought many clinical benefits to CT images. Direct correlations can be made between preoperative imaging data and operative planning. The aim of the current study is to evaluate the differences between conventional CT and multidetective three-dimensional CT(3D MDCT) measurements in craniofacial deformities. Methods: From January 2005 to November 2005, MDCT scans of 41 patients were evaluated by comparing them with conventional CT scans. The 3D MDCT images were assessed and reviewed by using a simple scoring system. Results: The 3D MDCT scans offered easy interpretation, facilitated surgical planning, and clarified postoperative results in malar complex fractures, mandibular fractures, and extensive maxillofacial fractures and cranioplasty. However, 3D MDCT images were not superior to conventional CT scans in the diagnosis of blowout fractures. Conclusion: In spite of its limitations, the 3D MDCT provided additional and more comprehensive information than the conventional CT for preoperative assessment of craniofacial deformities. Therefore, the 3D MDCT can be a useful tool for diagnosis and systematic treatment planning in craniofacial skeletal deformities.

A Study on the Fabrication and Comparison of the Phantom for Computed Tomography Image Quality Measurements Using Three-Dimensions Printing Technology (삼차원 프린팅 기술을 이용한 전산화단층영상 품질 측정용 팬텀 제작 및 비교 연구)

  • Yoon, Myeong-Seong;Hong, Soon-Min;Heo, Yeong-Cheol;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.595-602
    • /
    • 2018
  • Quality control (QC) of Computed Tomography (CT) devices is based on image quality measurement on AAPM CT phantom which is a standard phantom. Although it is possible to control the accuracy of the CT apparatus, it is expensive and has a disadvantage of low penetration rate. Therefore, in this study, we make image quality measurement phantom at low cost using FFF (Fused Filament Fabrication) type three-dimensional printer and try to analyze the usefulness, compare it with existing standard phantom. To print a phantom, We used three-dimensional printer of the FFF system and PLA (Poly Lactic Acid, density: $1.24g/cm^3$) filament, and the CT device of 64 MDCT (Aquilion CX, Toshiba, Japan). In addition, we printed a phantom using three-dimensional printer after design using various tool based on existing standard phantom. For image quality evaluation, AAPM CT phantom and self-generated phantom were measured 10 times for each block. The measured data were analyzed for significance using the Mannwhiteney U-test of SPSS (Version 22.0, SPSS, Chicago, IL, USA). As a result of the analysis, phantom fabricated with three-dimensional printer and standard phantom showed no significant difference (p>0.05). Furthermore, we confirmed that image quality measurement performance of a phantom using three-dimensional printer is similar to the existing standard phantom. In conclusion, we confirmed the possibility of low cost phantom fabrication using three dimensional printer.

Calculating of 3-Dimensional Temperature Distribution for High-Temperature Exhaust Gas Using CT-TDLAS (CT-TDLAS를 이용한 고온 배기가스의 3차원 온도분포 측정)

  • YOON, DONGIK;KIM, JOONHO;JEON, MINGYU;CHOI, DOOWON;CHO, GYEONGRAE;DOH, DEOGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • 3-dimensional temperature distribution of the exhaust gas of a fire flame of LPG have been measured by the constructed CT-TDLAS system. 3-Dimensional temperature distributions are measured by 2 layers of CT-TDLAS. Each layer has $8{\times}8$ laser beams implying the temperatures of 64 meshes are measured. SMART algorithm has been adopted for reconstructing the absorption coefficients on the meshes. The line strengths at 6 representative wave lengths of $H_2O$ have been used for obtaining the absorption spectra of the exhaust gas. The temperature distributions measured by the constructed CT-TDLAS have been compared with those by the thermocouples. The relative errors measured between by thermocouple and CT-TDLAS were 13% in average and 33% at maximum. The similarity of temperature distribution between by thermocouples and by CT-TDLAS has been shown at the lower layer than the upper layer implying an unstability of combustions.

Difference in glenoid retroversion between two-dimensional axial computed tomography and three-dimensional reconstructed images

  • Kim, Hyungsuk;Yoo, Chang Hyun;Park, Soo Bin;Song, Hyun Seok
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.2
    • /
    • pp.71-79
    • /
    • 2020
  • Background: The glenoid version of the shoulder joint correlates with the stability of the glenohumeral joint and the clinical results of total shoulder arthroplasty. We sought to analyze and compare the glenoid version measured by traditional axial two-dimensional (2D) computed tomography (CT) and three-dimensional (3D) reconstructed images at different levels. Methods: A total of 30 cases, including 15 male and 15 female patients, who underwent 3D shoulder CT imaging was randomly selected and matched by sex consecutively at one hospital. The angular difference between the scapular body axis and 2D CT slice axis was measured. The glenoid version was assessed at three levels (midpoint, upper one-third, and center of the lower circle of the glenoid) using Friedman's method in the axial plane with 2D CT images and at the same level of three different transverse planes using a 3D reconstructed image. Results: The mean difference between the scapular body axis on the 3D reconstructed image and the 2D CT slice axis was 38.4°. At the level of the midpoint of the glenoid, the measurements were 1.7°±4.9° on the 2D CT images and -1.8°±4.1° in the 3D reconstructed image. At the level of the center of the lower circle, the measurements were 2.7°±5.2° on the 2D CT images and -0.5°±4.8° in the 3D reconstructed image. A statistically significant difference was found between the 2D CT and 3D reconstructed images at all three levels. Conclusions: The glenoid version is measured differently between axial 2D CT and 3D reconstructed images at three levels. Use of 3D reconstructed imaging can provide a more accurate glenoid version profile relative to 2D CT. The glenoid version is measured differently at different levels.

Comparision of Mandible Changes on Three-Dimensional Computed Tomography image After Mandibular Surgery in Facial Asymmetry Patients (안면 비대칭 환자의 하악골 수술 후 하악골 변화에 대한 3차원 CT 영상 비교)

  • Kim, Mi-Ryoung;Chin, Byung-Rho
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.108-116
    • /
    • 2008
  • Background : When surgeons plan mandible ortho surgery for patients with skeletal class III facial asymmetry, they must be consider the exact method of surgery for correction of the facial asymmetry. Three-dimensional (3D) CT imaging is efficient in depicting specific structures in the craniofacial area. It reproduces actual measurements by minimizing errors from patient movement and allows for image magnification. Due to the rapid development of digital image technology and the expansion of treatment range, rapid progress has been made in the study of three-dimensional facial skeleton analysis. The purpose of this study was to conduct 3D CT image comparisons of mandible changes after mandibular surgery in facial asymmetry patients. Materials & methods : This study included 7 patients who underwent 3D CT before and after correction of facial asymmetry in the oral and maxillofacial surgery department of Yeungnam University Hospital between August 2002 and November 2005. Patients included 2 males and 5 females, with ages ranging from 16 years to 30 years (average 21.4 years). Frontal CT images were obtained before and after surgery, and changes in mandible angle and length were measured. Results : When we compared the measurements obtained before and after mandibular surgery in facial asymmetry patients, correction of facial asymmetry was identified on the "after" images. The mean difference between the right and left mandibular angles before mandibular surgery was $7^{\circ}$, whereas after mandibular surgery it was $1.5^{\circ}$. The right and left mandibular length ratios subtracted from 1 was 0.114 before mandibular surgery, while it was 0.036 after mandibular surgery. The differences were analyzed using the nonparametric test and the Wilcoxon signed ranks test (p<0.05). Conclusion: The system that has been developed produces an accurate three-dimensional representation of the skull, upon which individualized surgery of the skull and jaws is easily performed. The system also permits accurate measurement and monitoring of postsurgical changes to the face and jaws through reproducible and noninvasive means.

  • PDF

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.