• Title/Summary/Keyword: 3-bromo-4,5-dihydroxybenzylmethylether

Search Result 1, Processing Time 0.013 seconds

In vitro Anti-bacterial and Anti-scuticociliate Activities of Extract and Bromophenols of the Marine Red Alga Polysiphonia morrowii with Structure-activity Relationships (홍조류 모로우붉은실(Polysiphonia morrowii)의 추출물과 이로부터 분리된 브로모페놀계 화합물의 in vitro 항균·항스쿠티카충 활성 및 구조-활성 상관성)

  • Kang, So Young;Lee, Sang-Yun;Choi, Jun-Ho;Jung, Sung-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.1
    • /
    • pp.45-51
    • /
    • 2014
  • Scuticociliates are regarded as serious pathogens in marine aquaculture worldwide. In Korea, they cause mass-mortalities in fish such as the commercially important olive flounder Paralichthys olivaceus. In particular, mixed infections of scuticociliates with pathogenic bacteria have been commonly reported. During efforts to identify natural marine-algae derived products that possess anti-bacterial and anti-scuticociliate properties, we found that an 80% methanolic extract of the red alga Polysiphonia morrowii Harvey exhibits both anti-scuticociliate activity against Miamiensis avidus, which is a major causative agent of scuticociliatosis, and anti-bacterial activities against fish pathogenic bacteria. Activity-guided fractionation and isolation of the 80% methanolic extract of P. morrowii yielded three bromophenols, which were identified as 3-bromo-4,5-dihydroxybenzyl methyl ether (1), 3-bromo-4,5-dihydroxybenzaldehyde (2) and urceolatol (3) based on spectroscopic analyses. 3-bromo-4,5-dihydroxybenzyl methyl ether (1) showed the highest anti-bacterial and anti-scuticociliate activities, with a minimal inhibitory concentration (MIC) of $62.5{\mu}g/mL$ (against Vibrio anguillarum) and minimal lethal concentration (MLC) of 62.5 ppm (in seawater). Investigations of the anti-bacterial and anti-scuticociliate activities of seventeen bromophenol derivatives, including the three isolated natural bromophenols, showed that the existence of an electron donating group or atom with a non-covalent electron pair at $C_4$ of the 2-bromophenol structure may be important in anti-scuticociliate activity. These findings suggest that the extract and bromophenol derivatives of P. morrowii may provide useful alternatives in aquaculture anti-scuticociliate therapies.