• Title/Summary/Keyword: 3-axis Acceleration

Search Result 167, Processing Time 0.027 seconds

Effect of Disturbance Modeling on IMMU-Based Orientation Estimation Accuracy (교란성분 모델링이 IMMU기반 자세추정 정확성에 미치는 영향)

  • Choi, Mi Jin;Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.783-789
    • /
    • 2017
  • In terms of 3D orientation estimation based on nine-axis IMMU(inertial and magnetic measurement unit), there are two disturbance components decreasing estimation accuracy: one is external acceleration disturbing accelerometer's signals and the other is magnetic disturbance related to magnetometer's signals. In order to minimize effects by these two disturbances, two approaches including switching approach and model-based approach have been suggested and further research comparing these two has also been conducted. Nevertheless, effect of disturbance modeling differences on orientation estimation accuracy in model-based approach has not been studied before. This paper compares the recently reported two orientation estimation algorithms that have difference in disturbance models, in order to investigate the effect of disturbance models on accuracy of IMMU-based orientation estimation under various operating conditions. This research shows that the difference in disturbance models leads to difference in process noise covariance matrix. Consequently, this affected the orientation estimation, i.e., the estimation differences between the algorithms were root mean square errors of $1.35^{\circ}$ in average and $3.63^{\circ}$ in yaw estimation.

Fabrication of Piezoresistive Silicon Acceleration Sensor Using Selectively Porous Silicon Etching Method (선택적인 다공질 실리콘 에칭법을 이용한 압저항형 실리콘 가속도센서의 제조)

  • Sim, Jun-Hwan;Kim, Dong-Ki;Cho, Chan-Seob;Tae, Heung-Sik;Hahm, Sung-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.21-29
    • /
    • 1996
  • A piezoresistive silicon acceleration sensor with 8 beams, utilized by an unique silicon micromachining technique using porous silicon etching method which was fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon subtrates. The width, length, and thickness of the beam was $100\;{\mu}m$, $500\;{\mu}m$, and $7\;{\mu}m$, respectively, and the diameter of the mass paddle (the region suspended by the eight beams) was 1.4 mm. The seismic mass on the mass paddle was formed about 2 mg so as to measure accelerations of the range of 50g for automotive applications. For the formation of the mass, the solder mass was loaded on the mass paddle by dispensing Pb/Sn/Ag solder paste. After the solder paste is deposited, Heat treatment was carried out on the 3-zone reflow equipment. The decay time of the output signal to impulse excitation of the fabricated sensor was observed for approximately 30 ms. The sensitivity measured through summing circuit was 2.9 mV/g and the nonlinearity of the sensor was less than 2% of the full scale output. The output deviation of each bridge was ${\pm}4%$. The cross-axis sensitivity was within 4% and the resonant frequency was found to be 2.15 KHz from the FEM simulation results.

  • PDF

Accuracy Improvement Methode of Step Count Detection Using Variable Amplitude Threshold (가변 진폭 임계값을 이용한 걸음수 검출 정확도 향상 기법)

  • Ryu, Uk Jae;Kim, En Tae;An, Kyung Ho;Chang, Yun Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.257-264
    • /
    • 2013
  • In this study, we have designed the variable amplitude threshold algorithm that can enhance the accuracy of step count using variable amplitude. This algorithm converts the x, y, z sensor values into a single energy value($E_t$) by using SVM(Signal Vector Magnitude) algorithm and can pick step count out over 99% of accuracy through the peak data detection algorithm and fixed peak threshold. To prove the results, We made the noise filtering with the fixed amplitude threshold from the amplitude of energy value that found out the detection error was increasing, and it's the key idea of the variable amplitude threshold that can be adapted on the continuous data evaluation. The experiment results shows that the variable amplitude threshold algorithm can improve the average step count accuracy up to 98.9% at 10 Hz sampling rate and 99.6% at 20Hz sampling rate.

TRIO (Triplet Ionospheric Observatory) CINEMA

  • Lee, Dong-Hun;Seon, Jong-Ho;Jin, Ho;Kim, Khan-Hyuk;Lee, Jae-Jin;Jeon, Sang-Min;Pak, Soo-Jong;Jang, Min-Hwan;Kim, Kap-Sung;Lin, R.P.;Parks, G.K.;Halekas, J.S.;Larson, D.E.;Eastwood, J.P.;Roelof, E.C.;Horbury, T.S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.42.3-43
    • /
    • 2009
  • Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  • PDF

Smart-clothes System for Realtime Privacy Monitoring on Smart-phones (스마트폰에서 실시간 개인 모니터링을 위한 스마트의류 시스템)

  • Park, Hyun-Moon;Jeon, Byung-Chan;Park, Won-Ki;Park, Soo-Hyun;Lee, Sung-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.8
    • /
    • pp.962-971
    • /
    • 2013
  • In this paper, we propose a method to infer the user's behavior and situation through collected data from multi-sensor equipped with a smart clothing and it was implemented as a smart-phone App. This smart-clothes is able to monitor wearer users' health condition and activity levels through the gyro, temp and acceleration sensor. Sensed vital signs are transmitted to a bluetooth-enabled smart-phone in the smart-clothes. Thus, users are able to have real time information about their user condition, including activities level on the smart-application. User context reasoning and behavior determine is very difficult using multi-sensor depending on the measured value of the sensor varies from environmental noise. So, the reasoning and the digital filter algorithms to determine user behavior reducing noise and are required. In this paper, we used Multi-black Filter and SVM processing behavior for 3-axis value as a representative value of one.

Noise Reduction in Real-time Context Aware using Wearable Device (웨어러블 기기를 이용한 실시간 상황인식에서의 잡음제거)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1803-1810
    • /
    • 2018
  • Recently, many researches related to IoT (Internet of Things) have been actively conducted. In order to improve the context aware function of smart wearable devices using the IoT, we proposed a noise reduction method for the event data of the sensor part. In thisstudy, the adoption of the low - pass filter induces the attenuation of the abnormally measured value, and the benefit was obtained from the situation recognition using the event data of the sensor. As a result, we have validated attenuation for abnormal or excessive noise using event data detected and reported by 3-axis acceleration sensors on some devices, such as smartphones and smart watches. In addition, various pattern data necessary for real - time context aware were obtained through noise pattern analysis.

Passenger Ship Evacuation Simulation Considering External Forces due to the Inclination of Damaged Ship (손상 선박의 자세를 고려한 여객선 승객 탈출 시뮬레이션)

  • Ha, Sol;Cho, Yoon-Ok;Ku, Namkug;Lee, Kyu-Yeul;Roh, Myung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • This paper presents a simulation for passenger ship evacuation considering the inclination of a ship. In order to describe a passenger's behavior in an evacuation situation, a passenger is modeled as a rigid body which translates in the horizontal plane and rotates along the vertical axis. The position and rotation angle of a passenger are calculated by solving the dynamic equations of motions at each time step. To calculate inclined angle of damaged ship, static equilibrium equations of damaged ship are derived using "added weight method". Using these equations, physical external forces due to the inclination of a ship act on the body of each passenger. The crowd behavior of the passenger is considered as the flock behavior, a form of collective behavior of a large number of interacting passengers with a common group objective. Passengers can also avoid an obstacle due to penalty forces acting on their body. With the passenger model and forces acting on its body, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) are implemented and the effects of ship's inclination on the evacuation time are confirmed.

Performance Improvement of a Pedestrian Dead Reckoning System using a Low Cost IMU (저가형 관성센서를 이용한 보행자 관성항법 시스템의 성능 향상)

  • Kim, Yun-Ki;Park, Jae-Hyun;Kwak, Hwy-Kuen;Park, Sang-Hoon;Lee, ChoonWoo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.569-575
    • /
    • 2013
  • This paper proposes a method for PDR (Pedestrian Dead-Reckoning) using a low cost IMU. Generally, GPS has been widely used for localization of pedestrians. However, GPS is disabled in the indoor environment such as in buildings. To solve this problem, this research suggests the PDR scheme with an IMU attached to the pedestrian's waist. However, despite the fact many methods have been proposed to estimate the pedestrian's position, but their results are not sufficient. One of the most important factors to improve performance is, a new calibration method that has been proposed to obtain the reliable sensor data. In addition to this calibration, the PDR method is also proposed to detect steps, where estimation schemes of step length, attitude, and heading angles are developed. Peak and zero crossings are detected to count the steps from 3-axis acceleration values. For the estimation of step length, a nonlinear step model is adopted to take advantage of using one parameter. Complementary filter and zero angular velocity are utilized to estimate the attitude of the IMU module and to minimize the heading angle drift. To verify the effectiveness of this scheme, a real-time system is implemented and demonstrated. Experimental results show an accuracy of below 1% and below 3% in distance and position errors, respectively, which can be achievable using a high cost IMU.

Carbon tip growth by electron beam deposition (전자빔 조사에 의한 탄소상 탐침의 성장)

  • 김성현;최영진
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2003
  • Carbon tips were grown on Si cantilevers by applying an electron beam to them directly with Scanning Electron Microscope. A carbon tip was fabricated by aligning the electron beam directly down the vertical axis of Si cantilever and then irradiating a single spot on the cantilever for a proper time in the dominant atmosphere of residual gases generated by the oil of the diffusion pump. A number of control parameters for SEM, including exposure time, acceleration voltage, emission current, and beam probe current, were allowed to make various aspect ratio feature. The growth of carbon tips was not affected by the surface morphology of substrates. We could acquired the tip whose effective length is 0.5 $\mu\textrm{m}$, bottom diameter is 90 nm and cone half angle $3.5^{\circ}$ The growth technique of the high aspect ratio carbon tips on the tip-free cantilevers is available to reduce the complexities of fabricating sub-micron scale tips on the PZT thin film actuator integrated AFM cantilevers.

Effect of Incident Angle of Wave on Floating Pontoon and Moment Resisting Frame (파랑 입사각이 장방형 플로팅 함체와 상부 골조에 미치는 효과)

  • Lee, Young-Wook;Kim, Bo-Ram
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.221-229
    • /
    • 2013
  • To find the influence of incident angle of wave on the moment of 3 storied steel moment resisting frame which is placed on the concrete rectangular pontoon, the fluid dynamic analysis is carried out, varying the period of wave from 5 to 15 second by 2 seconds. As increasing incident angle of wave to longitudinal axis, the influence of RAO-rolling is increased. The moment of longitudinal frame is increased apparently by the wave pressure when the incident angle is $0^{\circ}$. And the moment of the frame due to the wave pressure is decreased as the incident angle is increased. But the moment of frame due to acceleration caused from pitching and rolling is increased. It is shown that the increased moment when incident angle is $90^{\circ}$ is much greater than that of incident angle $0^{\circ}$.