• Title/Summary/Keyword: 3-axial Acceleration Sensor

Search Result 12, Processing Time 0.017 seconds

Implementation of Falls Detection System Using 3-axial Accelerometer Sensor (3축 가속도 센서를 이용한 낙상 검출 시스템 구현)

  • Jeon, Ah-Young;Yoo, Ju-Yeon;Park, Geun-Chul;Jeon, Gye-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1564-1572
    • /
    • 2010
  • In this study, the falls detection and direction classification system was implemented using 3-axial acceleration signal. The acceleration signals were acquired from the 3-axial accelerometer(MMA7260Q, Freescale, USA), and then transmitted to the computer through USB interface. The implemented system can detect falls using the newly proposed algorithm, and also classify the direction of falls using fuzzy classifier. The 6 subjects was selected for experiment and the accelerometer was attached on each subject's chest. Each subject walked in normal pace for 5 seconds, and then the fall down according to the four direction(front_fall, back_fall, left_fall and right_fall) during at least 2 second. The falls was easily detect using the newly proposed algorithm in this study. The acquired signals were analyzed after 1 second from generating falls. The fuzzy classifier was used to classify the direction of falls. The mean value of the falls detection rate was 94.79%. The classifier rate according to falls direction were 95.83% in case of front falls, 100% incase of back falls, 87.5% in case of left falls, and 95.83% in case of right falls.

System Implementation and Algorithm Development for Classification of the Activity States Using 3 Axial Accelerometer (3축 가속도를 이용한 활동상태 분류 시스템 구현 및 알고리즘 개발)

  • Noh, Yun-Hong;Ye, Soo-Young;Jeong, Do-Un
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • A real time monitoring system from a PC has been developed which can be accessed through transmitted data, which incorporates an established low powered transport system equipped with a single chip combined with wireless sensor network technology from a three-axis acceleration sensor. In order to distinguish between static posture and dynamic posture, the extracted parameter from the rapidly transmitted data needs differentiation of movement and activity structures and status for an accurate measurement. When results interpret a static formation, statistics referring to each respective formation, known as the K-mean algorithm is utilized to carry out a determination of detailed positioning, and when results alter towards dynamic activity, fuzzy algorithm (fuzzy categorizer), which is the relationship between speed and ISVM, is used to categorize activity levels into 4 stages. Also, the ISVM is calculated with the instrumented acceleration speed on the running machine according to various speeds and its relationship with kinetic energy goes through correlation analysis. With the evaluation of the proposed system, the accuracy level stands at 100% at a static formation and also a 96.79% accuracy with kinetic energy and we can easily determine the energy consumption through the relationship between ISVM and kinetic energy.