• 제목/요약/키워드: 3-Phase series-resonant converter

검색결과 16건 처리시간 0.021초

A Novel Two Phase Interleaved LLC Series Resonant Converter using a Phase of the Resonant Capacitor

  • Yi, Kang-Hyun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.275-279
    • /
    • 2008
  • An LLC series resonant converter has many unique characteristics and improvements over PWM topologies. However, many output capacitors are needed in parallel to satisfy output voltage ripple and the rated ripple current of the capacitors. This paper deals with a novel two phase interleaved LLC resonant converter using a phase of the resonant capacitor. The proposed converter can satisfy output voltage ripple and a rated ripple current of capacitors with few output capacitors, relatively. The operation and features are considered in detail and a prototype with a 12V-100A output is investigated.

이동통신 기지국용 SMPS 개발 연구 (Research on Development of SMPS used in a Base Station for Mobile Communication)

  • 지준근
    • 한국산학기술학회논문지
    • /
    • 제6권3호
    • /
    • pp.278-284
    • /
    • 2005
  • 본 논문에서는 통신 기지국용 전원으로 사용할 수 있는 위상 제어 직렬 공진형 컨버터 시스템을 제안하고 동작 원리 및 특성을 살펴보았다. 위상 제어 직렬 공진형 컨버터 시스템은 POSR(Parallel Output Series Resonant) 형태이기 때문에 부하에 강인하고 MOSFET스위치의 위상을 제어함으로써 입력전압의 변화에도 안정된 출력을 보여준다 먼저 시스템의 분석과 PSIM프로그램을 사용한 시뮬레이션을 하였고, 또한 실제 시스템의 실험을 통하여 시스템의 특성을 확인하였다.

  • PDF

3레벨 LCLC 공진 컨버터를 적용한 비접촉 전원 (Contactless power supply using three-level LCLC resonant converter)

  • 이현관;공영수;김은수;조정구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.102-105
    • /
    • 2005
  • For transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system. However, the high frequency series resonant converter has the disadvantages such as the low efficiency, the high voltage gain characteristics and deviation of the phase angle in the overall load range. To improve this disadvantage, In this paper, the characteristics of the high efficiency and unit voltage gain as well as in phase are revealed in the proposed three-level LCLC ( Inductor - Capacitor - Inductor -Capacitor)resonant converter. The results are verified on the simulation based on the theoretical analysis and the 4kW experimental prototype.

  • PDF

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구 (A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter)

  • 한희민;김민영;서광덕;김준석
    • 전력전자학회논문지
    • /
    • 제14권1호
    • /
    • pp.72-81
    • /
    • 2009
  • 본 논문에서는 대기압 플라즈마 발생용 정현파펄스형 교류 전원 장치에 대한 연구를 진행하였다. 정현파펄스형 전원장치는 기존의 LC공진을 이용한 교류 전원장치보다 높은 dv/dt를 갖게 되므로 안정적인 플라즈마 공급이 가능하며 펄스형에 비해 고조파 노이즈가 적고, 정전류 턴온-영전압 턴오프 형태로 동작하므로 매우 높은 효율을 갖는다. 또한 플라즈마 점화 기능을 강화하고 안정적인 전압제어를 위해 3상 부스트형 컨버터를 입력단에 사용하여 입력 역률이 매우 높은 시스템을 구성할 수 있다. 실험실 수준의 10kW부하시설을 사용하여 본 연구의 결과를 입증하였다.

A Hybrid PWM-Resonant DC-DC Converter for Electric Vehicle Battery Charger Applications

  • Lee, Il-Oun
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1158-1167
    • /
    • 2015
  • In this paper, a new hybrid DC-DC converter is proposed for electric vehicle 3.3 kW on-board battery charger applications, which can be modulated in a phase-shift manner under a fixed frequency or frequency variation. By integrating a half-bridge (HB) LLC series resonant converter (SRC) into the conventional phase-shift full-bridge (PSFB) converter with a full-bridge rectifier, the proposed converter has many advantages such as a full soft-switching range without duty-cycle loss, zero-current-switching operation of the rectifier diodes, minimized circulating current, reduced filter inductor size, and better utilization of transformers than other hybrid dc-dc converters. The feasibility of the proposed converter has been verified by experimental results under an output voltage range of 250-420V dc at 3.3 kW.

3상 직렬공진형 고전압 커패시터 충전기의 해석 및 설계 (Analysis and Design of a 3-phase Series-Resonant type High Voltage Capacitor Charger)

  • 이병하;박상은;차한주
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.510-516
    • /
    • 2013
  • This paper suggests a 3-phase series-resonant type high voltage capacitor charger for an EML pulsed power system. The operating principle on the charger is explained by an equivalent circuit. Additionally, we analyze the charging characteristic in one discontinuous conduction mode and three continuous conduction modes. The analysis shows that the resonant current per phase is two thirds of the 3-phase charger's average charging current and one third of the single-phase charger's average charging current with the same capacity. We suggest a design method of the 3-phase capacitor charger in each operational mode and present an example of 3.5 kW capacitor charger at ${\omega}_s=0.33{\omega}_r$. The 3.5 kW 3-phase capacitor charger prototype is assembled with a TI28335 controller and a 40 kJ, 7 kV capacitor. The design rules based on the analysis are verified by experiment.

전기자동차 탑재형 충전기 응용에서 위상변조 풀브리지 컨버터 성능 분석과 그 개선에 관한 연구 (Research on the Analysis and Improvement of the Performance of the Phase-Shifted Full-Bridge Converter for Electric Vehicle Battery Charger Applications)

  • 이일운
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.479-490
    • /
    • 2015
  • The conventional phase-shifted full-bridge (PSFB) converter with an LC filter has been widely used for high-power applications of over 1.0 kW. However, the PSFB converter cannot obtain optimal power conversion efficiency during the battery charging in electric vehicle (EV) on-board battery charger applications because of its unique drawbacks, such as a large circulating current and very high voltage stress in the rectifier diodes. As a result, the converters with a capacitive filter, such as LLC resonant converters, replace the PSFB converter in the EV chargers. This study analyzes the problems of the PSFB converter for EV on-board charger applications in detail. Moreover, the newest converters based on the conventional PSFB converter are reviewed. On the basis of the reviews, new PSFB converter topologies are proposed for EV charger applications. The new topologies are formed by connecting the rectifier stage in the PSFB converter with the output of an LLC resonant converter in series. Many problems of the conventional PSFB converter for EV charger applications can be solved and the performance can be more improved because of this structure; this idea is confirmed by an experiment consisting of prototype battery chargers under the output voltage range of 250-450 Vdc at 3.3 kW.

Modeling and Feedback Control of LLC Resonant Converters at High Switching Frequency

  • Park, Hwa-Pyeong;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.849-860
    • /
    • 2016
  • The high-switching-frequency operation of power converters can achieve high power density through size reduction of passive components, such as capacitors, inductors, and transformers. However, a small-output capacitor that has small capacitance and low effective series resistance changes the small-signal model of the converter power stage. Such a capacitor can make the converter unstable by increasing the crossover frequency in the transfer function of the small-signal model. In this paper, the design and implementation of a high-frequency LLC resonant converter are presented to verify the power density enhancement achieved by decreasing the size of passive components. The effect of small output capacitance is analyzed for stability by using a proper small-signal model of the LLC resonant converter. Finally, proper design methods of a feedback compensator are proposed to obtain a sufficient phase margin in the Bode plot of the loop gain of the converter for stable operation at 500 kHz switching frequency. A theoretical approach using MATLAB, a simulation approach using PSIM, and experimental results are presented to show the validity of the proposed analysis and design methods with 100 and 500 kHz prototype converters.