• Title/Summary/Keyword: 3-Phase PWM Converter

Search Result 234, Processing Time 0.024 seconds

Controller Design of Static Var Compensator Using Three Phase PWM Cuk AC-AC Converter (3상 PWM Cuk AC-AC 컨버터를 이용한 정지형 무효전력보상기의 제어기 설계)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.579-582
    • /
    • 2004
  • This paper presents controller design of a static var compensator using PWM Cuk AC-AC converter. The PWM Cuk AC-AC converter is modelled by using complex circuit DQ transformation and perturbed around the operating point whereby the small signal system characteristics is analytically obtained. Finally, the PSIM simulations show the validity of the modelling and analysis.

  • PDF

Characteristic Analysis of Static Var Compensator Using Three Phase PWM Cuk AC-AC Converter (3상 PWM Cuk AC-AC 컨버터를 이용한 정지형 무효전력보상기의 특성해석)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.597-600
    • /
    • 2004
  • In this paper, a static var compensator using PWM Cuk AC-AC converter is presented. The PWM Cuk AC-AC converter is modelled by using complex circuit DQ transformation whereby the basic condition to be used as a var compensator is derived and the static characteristic equations such as input current and reactive power is analytically obtained. Finally, the PSIM simulations show the validity of the modelling and analysis.

  • PDF

Characteristics Analysis of PWM SEPIC AC-AC Converter (3상 PWM SEPIC AC-AC 컨버터의 특성해석)

  • Choi Nam-Sup
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1158-1160
    • /
    • 2004
  • In this paper, a PWM SEPIC AC-AC converter for VVCF applications such as AC line conditioner, phase shifter is presented. The PWM SEPIC AC-AC converter is modelled by using complex circuit DQ transformation whereby the characteristics equations such as voltage gain and input power factor is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

Control Algorithm for 4-Switch Inverter of 3-Phase SRM (3상 SRM 구동용 4-스위치 인버터 PWM 제어 알고리즘)

  • Yoon, Yong-Ho;Lee, Byoung-Kuk;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.303-309
    • /
    • 2009
  • Switched Reluctance Motor(SRM) has become popular for industrial application, particularly for low medium drives due to the advantages of SRM over the other ac motors: SRM can be manufactured with low cost because it has a simple structure. But, asymmetric bridge converter that generally is used for driving requires two discrete switching devices and freewheeling diodes per phase, and cause the SRM drives to be complicated and to increase the cost of overall system. Therefore, this paper suggests a new type of 4-switch converter for SRM. 4-switch converter topology is studied to provide a possibility for the realization of low cost 3-phase SRM drive system. For effective utilization of the developed system, a new current control algorithm is designed and implemented to produce the desired dynamic performance. With the developed power conversion circuit and control scheme, it is expected that the proposed system can be widely used in commercial applications with reduced system cost.

DSP(TMS320C40) Control of Three-phase PWM AC/DC Converter (TMS320C40을 이용한 3상 PWM AC/DC 컨버터 제어)

  • Byun, Young-Bok;Kim, Eun-Soo;Koo, Heun-Hoi;Joe, Kee-Yeon;Park, Sung-Jun;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.518-520
    • /
    • 1996
  • High frequency switching converters are becoming more popular because of several benefits which are essential in power conversion system. This paper introduces a high speed digital controller using TMS320C40 DSP chip which can be used for high frequency switching converters and demonstrates its performance by operating three-phase PWM AC/DC converter with unity power factor at 20kHz sampling frequency. TMS320C40 DSP chip operates with 40-ns instruction cycle times and is capable of 275 MOPS. The running time of real time control loop at the three-phase PWM AC/DC converter is $44.6{\mu}sec$.

  • PDF

Design and Simulation of analog controller for 3 Phase PWM Converter Based on Stationary Reference Frame (3상 PWM Converter를 위한 정지 좌표계법 Analog 제어기 설계 및 시뮬레이션)

  • 이영국;노철원;최종률
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.14-20
    • /
    • 1997
  • Due to several advantages of Pulse Width Modulated(PWM) Converter, such as unity power factor with low-harmonics and energy regeneration, PWM converter has been widely used in industrial application. In every application of energy conversion equipment, the design and implementation must be carried out considering performance and cost. High quality with low cost is the best choice for energy conversion equipment. High dc link voltage can reduce inverter and motor side losses and system dimension compare to low dc link voltage. Analog controller can make PWM converter cheaper without considerable degradation of the performance than digital controller. This paper shows the simplified analog controller-for 600V dc link voltage using stationary reference frame control and the simulation results.

  • PDF

Power Factor Correction of the Three Phase PWM AC/DC Converter Using Predicted Control Strategy (예측 제어 기법을 적용한 3상 PWM AC/DC 콘버터의 역률개선)

  • 백종현;최종수;홍성태
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, the three phase AC to DC boost converter has become one of the most widely used power converters as DC power source in the industry applications. In this paepr, a three phase PWM AC toDC boost converter that operates with unity power factor and sinusodial input currents is presented. The current control of the converter is based onthe predicted current control strategy with fixed switching frequency and the input current tracks the reference cuent within one sampling time interval. Therefore, by using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the DC link.

  • PDF

A Study on the Unity Power Factor Converter to Inhibit Harmonics of Distributed Line (배전선로의 고조파 성분억제가 가능한 단위역률 전력변환기 개발에 관한 연구)

  • 박성준;변영복;권순재;김철우
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.5
    • /
    • pp.57-63
    • /
    • 1995
  • In this paper, 3-Phase PWM AC/DC step up type converter that reduces the harmonics and reactive power of the distribution line is analyzed and the stable control method is proposed as controlling the sinusoidal phase current and phase voltage in phase. In implementation of controller, simple control algorithm is derived as the instantaneous voltage control methods without current sensor. The instantaneous voltage is controled by PWM method and the switching frequency is presented in low range 3 [kHz] for reducing the switching loss. In case of active load, four quadrants operation converter regenerate power from the load to the power source is conducted. Through the computer simulation and experimentation, the proposed control method is justified.

  • PDF

Three-Phase High-Power-Density Bidirectional DC-DC Converter (3상 변압기를 이용한 고밀도 양방향 전력변환기)

  • Le, Tuan-Vu;Choi, Woo-Seok;Kim, Sun-Pil;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.45-46
    • /
    • 2014
  • This paper presents a three-phase high-power-density bidirectional DC-DC converter. The converter employs dual three-phase active bridges and a three-phase transformer. The presented converter is controlled by two symmetric PWM modules and phase between two symmetric PWM modules to control the power flow. Simulation is included to verify the presented converter.

  • PDF

Bi-Directional Multi-Level Converter for an Energy Storage System

  • Han, Sang-Hyup;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.499-506
    • /
    • 2014
  • This paper proposes a 3 kW single-phase bi-directional multi-level converter for energy storage applications. The proposed topology is based on the H-bridge structure with four switches connected to the DC-link. A simple phase opposition disposition PWM method that requires only one carrier signal is also suggested. The switching sequence to balance the capacitor voltage is considered. The topology can be extended to a nine-level converter or a three-phase system. The operating principle of the proposed converter is verified through a simulation and an experiment.