• Title/Summary/Keyword: 3-Phase DC to AC inverter

Search Result 74, Processing Time 0.026 seconds

The grid-connected bidirectional PCS technology of the ESS (에너지 저장장치의 계통 연계형 양방향 PCS 기술)

  • Ko, Bong-Woon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1280-1287
    • /
    • 2019
  • Grid-connected bidirectional PCS(Power Conditioning System) technology is a technology for implementing distributed renewable energy smart grid. And it is always charged by using power collected from solar modules and commercial grid power among vast smart grid systems, and stored when needed.It is a hybrid energy storage device that allows power to be released into the low voltage system. To this end, a PV input power converter with MPPT function, a bidirectional power converter for battery charging and discharging, and a DC Link input are output to a 3 phase 380V AC system, and if nessary, the bidirectional DC/DC converter We designed and developed a PCS with three power converter structures composed of inverters that perform battery charging. Currently, this system is applied to the site of Jeju, which is vulnerable to power outages and fire accidents.

Voltage Control of Stand-Alone Inverter for Power Quality Improvement Under Unbalanced and Non-linear Load (불평형 및 비선형부하 시 전력품질 향상을 위한 독립형 인버터의 전압제어 기법)

  • Lee, Wujong;Jo, Jongmin;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.567-575
    • /
    • 2016
  • This paper proposed the voltage control of stand-alone inverter for power quality improvement under unbalanced and non-linear load. The 3-phase DC-AC inverter controls CVCF(Constant Voltage Constant Frequency) and selective harmonic eliminate method in stand-alone mode by PR controller, and the stand-lone inverter supplies stable sinusoidal voltage to balanced, unbalanced and non-linear loads. The total harmonic distortion(THD) of line-to-line load voltage($V_{LL}$) is 1.2% in the balanced load. THD of $V_{LL}$ is reduced from 5.2% to 1.4% and 6.7% to 3.5%, respectively unbalanced and non-linear load. The stand-alone inverter can be supplies sinusoidal balanced voltage to unbalanced load because the voltage unbalanced factor(VUF) of $V_{LL}$ is reduced from 5.2% to 1.4% in the unbalanced load. Feasibility of control method for a stand-alone inverter will be verified through 30kW stand-alone inverter system.

Regeneration Inverter System for DC Traction with Hormonic Reduction Capability (고조파 저감 능력을 가진 직류전철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yong-Ki;Bang, Hyo-Jin;Song, Sang-Hun;Ahn, Kyu-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.96-104
    • /
    • 2004
  • This paper proposes a dc power regenerating systems, which can generate the excessive dc power from dc bus line to ac supply in substations for traction system The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As an regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

A Compensation Method considering Unbalance of Reactor at Source Side in Driving 3 Phase Voltage type PWM Converter (3상 전압형 PWM 컨버터 운전시 전원측 리액터의 불평형을 고려한 보상법)

  • Chun, Ji-Yong;Lee Sa-Young;Cho Yu-Hwan;Lee Geun-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.373-379
    • /
    • 2005
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining way of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. Because it is possible that the unbalanced System control is used to leakage transformer not equaled reactance by each phase in rectifier system, the proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

Implementation and Characteristic Analysis of DC/DC Voltage Regulator for Operation Efficiency Improvement in PV system (태양광발전의 운용효율 향상을 위한 DC/DC 전압 레귤레이터의 구현 및 특성분석)

  • Kim, Chanhyeok;Choi, Sungsik;Kang, Minkwan;Jung, Youngmun;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.201-208
    • /
    • 2017
  • Recently, the installation of photovoltaic(PV) systems has been increasing due to the worldwide interest in eco-friendly and abundant solar energy. On the other hand, a PV system has approximately 25% power loss while the energy generated from solar cells is transformed to the power coupling point through a power conversion system (DC/AC). If the output voltage of a string in the PV system is lower than the operating range of the inverter when a part of module in the string has a shadow due to weather conditions, the string is not synchronized and the whole efficiency of output power in a PV system may be reduced significantly. Therefore, to overcome this problem, this paper proposes a novel control method to compensate for the lower voltage by introducing a DC/DC voltage regulator for each string in a PV system, which adopts a concept for MPPT (Maximum Power Point Tracking) control function using the P&O algorithm and adopts constant voltage control method used in an existing inverter. This paper also implements a 2kW DC/DC voltage regulator based on the proposed algorithm and performs a variety of scenario-based experiments. From the simulation result, it was confirmed that the operation efficiency in the proposed method is improved compared to the existing method.

Modeling for Utility Interactive Photovoltaic Power Generation System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 태양광 발전시스템의 배전계통 연계운전을 위한 모델링)

  • Kim, Woo-Hyun;Kang, Min-Kyu;Kim, Eung-Sang;Kim, Ji-Won;Ro, Byong-Kwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1180-1182
    • /
    • 1999
  • Modeling for utility interactive photovoltaic power generation system has been studied using PSCAD/EMTDC. The proposed model system consists of a simple utility circuit configuration, 3kW of single phase utility interactive photovoltaic system, single phase PWM voltage source inverter module, and feed forward PID controller as control circuit. In the system, the DC current is assumed constant, and the voltage source inverter provides sinusoidal ac current for the loads of utility system. The simulation results are given in order to verify the effectiveness of the proposed model. The phases of output voltage of utility system and the output current of the inverter module are compared. Especially, the compensation effect of the photovoltaic system for the unbalanced load is analyzed. and the transient phenomena for a phase to ground fault are also simulated.

  • PDF

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Fault Diagnosis for 3-Phase Diode Rectifier using Harmonic Ripples of DC Link Voltage (직류단 전압의 고조파 맥동 검출을 이용한 3상 다이오드 정류기의 고장 진단)

  • Park, Je-Wook;Baek, Seong-Won;Kim, Jang-Mok;Lee, Dong-Choon;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.457-465
    • /
    • 2011
  • The fault analysis and detecting algorithm for a 3 phase diode rectifier is proposed. The 3 phase dioderectifier is used for the AC power rectifier of the PWM inverter. The input power or diode faults cause theripples of the DC voltage, degradation of the control performance and life shortening of the DC link capacitor.In this paper, the ripple of the DC voltage is mathematically analyzed for the earth fault of input power andopen circuit fault of the diode, respectively. The fault detection and type of fault can be obtained by comparingthe average DC voltage and the instant DC voltage which is sampled with 6 times of grid frequency. Theproposed method can be easily applicable and doesn't require additional circuit. The experimental and simulationresults are presented to verify the validity of the proposed method.

Eddy Current Loss Analysis of the Permanent Magnet Brushless AC Motor (영구자석 브러시리스 AC 모터의 와전류 손실 특성해석)

  • Jang, S.M.;Cho, H.W.;Lee, S.H.;Jeong, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.700-702
    • /
    • 2002
  • High-speed brushless permanent magnet machines are good for compressor and aerospace applications, etc. since they are conductive to high efficiency, high power density, small size and low weight. This paper presents 3-phase permanent magnet brushless AC Motor designed for the high-speed drives. Especially, we predicted the inverter high frequency pulse width modulation (PWM) switching caused eddy current losses in a permanent magnet brushless dc motor.

  • PDF

A Study on the Utility Interactive Photovoltaic System using a Chopper and a PWM Inverter (쵸퍼와 PWM 전압형 인버터를 이용한 계통연계형 태양광발전시스템에 관한 연구)

  • 유택빈;성낙규;이승환;김성남;이훈구;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.131-137
    • /
    • 1998
  • The solar cells should be operated at the maximum power point because its output characteristics are greatly fluctuated on the variation of insolation, temperature and load. Photovoltaic system needs an inverter which can interface the dc output power of solar cell with the residential ac load. The inverter has to supply a sinusoidal current and voltage to the load and the utility line with a high power factor. This paper proposes an utility interactive photovoltaic system designed with a step-up chopper and a PWM voltage source inverter. The step-up chopper operates in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power points of solar cell without any influence on the variation of insolation and temperature. The voltage source inverter operates in a manner that its output voltage is in phase with the utility voltage. The inverter supplies an ac power with high factor and low level of harmonics to the load and the utility power system.