• Title/Summary/Keyword: 3-Hydroxypropionic acid

Search Result 5, Processing Time 0.021 seconds

Production of 3-Hydroxypropionic Acid from Acrylic Acid by Newly Isolated Rhodococcus erythropolis LG12

  • Lee, Sang-Hyun;Park, Si-Jae;Park, Oh-Jin;Cho, Jun-Hyeong;Rhee, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropo/is LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an $OD_{600}$ of 5. Further cultivation of R. erythropo/is LG 12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/l/h at $30^{\circ}C$ after 72 h.

Evaluation of Newly Isolated Klebsiella pneumoniae Strains for the Co-Production of 3-hydroxypropionic acid and 1,3-propanediol from Glycerol (새로이 분리된 Klebsiella pneumoniae 균주들의 글리세롤 기반 3-hydroxypropionic acid 및 1,3-propanediol 동시 생산성 평가)

  • Ko, Yeounjoo;Seol, Eunhee;Sekar, Balaji Sundara;Kwon, Seongjin;Lee, Jaehyeon;Park, Sunghoon
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.246-255
    • /
    • 2016
  • Co-production of 3-hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) was suggested as an innovative strategy to overcome several limitations occurring in the single production of 3-HP from glycerol. In this study, two new isolates of Klebsiella pneumoniae, which produce less lipopolysaccharide (LPS) thus considered less pathogenic than K. pneumoniae DSM 2026, were compared and evaluated for their potential for the co-production of 3-HP and 1,3-PDO. The newly isolated strains showed significantly faster sedimentation rate than DSM, which should be beneficial for downstream processing. Analysis of genome sequences of the isolates confirmed the presence of all genes necessary for glycerol assimilation, 1,3-PDO production and biosynthesis of coenzyme $B_{12}$. Co-production yield was highest under anaerobic condition while cell growth was highest under aerobic condition. Both strains showed similarly good performance for the co-production although J2B gave the slightly higher co-production yield of 0.80 mol/mol than GSC021 (0.75 mol/mol). The evaluation of the newly developed strains presented here should be useful in designing similar evaluation experiments for other microorganisms.

Structure Based Protein Engineering of Aldehyde Dehydrogenase from Azospirillum brasilense to Enhance Enzyme Activity against Unnatural 3-Hydroxypropionaldehyde

  • Son, Hyeoncheol Francis;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.170-175
    • /
    • 2022
  • 3-Hydroxypropionic acid (3HP) is a platform chemical and can be converted into other valuable C3-based chemicals. Because a large amount of glycerol is produced as a by-product in the biodiesel industry, glycerol is an attractive carbon source in the biological production of 3HP. Although eight 3HP-producing aldehyde dehydrogenases (ALDHs) have been reported so far, the low conversion rate from 3-hydroxypropionaldehyde (3HPA) to 3HP using these enzymes is still a bottleneck for the production of 3HP. In this study, we elucidated the substrate binding modes of the eight 3HP-producing ALDHs through bioinformatic and structural analysis of these enzymes and selected protein engineering targets for developing enzymes with enhanced enzymatic activity against 3HPA. Among ten AbKGSADH variants we tested, three variants with replacement at the Arg281 site of AbKGSADH showed enhanced enzymatic activities. In particular, the AbKGSADHR281Y variant exhibited improved catalytic efficiency by 2.5-fold compared with the wild type.

A Case of Propionic Acidemia Presenting with Dilated Cardiomyopathy (확장성 심근병증으로 발현된 프로피온산혈증 1례)

  • Son, Jisoo;Choi, Yoon-Ha;Seo, Go Hun;Kang, Minji;Lee, Beom Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2021
  • Propionic acidemia (PA) is an inherited autosomal recessive disorder, due to the deficiency of propionyl-CoA carboxylase (PCC). PCC is the enzyme which catalyzes the conversion of propionyl-CoA to D-methylmalonyl-CoA, and it is critical for the metabolism of amino acids, odd-chain fatty acids, and side chains of cholesterol. The clinical manifestations present mostly at the neonatal period with life-threatening metabolic acidosis and hyperammonemia. Here, we described a case of a 16-year-old Korean boy with late-onset PA who presented with embolic cerebral infarction due to dilated cardiomyopathy (DCMP) with left ventricular noncompaction. And he has family history of sudden cardiac death, so we performed metabolic screening and genetic tests. Elevated levels of 3-hydroxypropionic acid, methylcitric acid and propionylglycerine were detected in urine. Plasma acylcarnitine profile showed elevated propionylcarnitine (C3). Diagnosis of PA was confirmed by genetic analysis, which revealed compound heterozygous mutations, c.[1151T>G] (p.[Phe384Cys]) and c.[1228C>T] (p.[Arg410Trp]) in PCCB gene. His heart function is in improving state and the results of biochemical analysis are stable with heart failure medication and metabolic managements. We present a case of patient without episodes of metabolic decompensation who manifests DCMP as the first symptom of PA.

A Case of Neonatal Onset Propionic Acidemia with Mild Clinical Presentations (경한 임상 경과를 보인 신생아 시기의 프로피온산혈증 1례)

  • Kim, Kyung-Ran;Kim, Jinsup;Huh, Rim;Park, Hyung-Doo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • Propionic acidemia (PA) is an autosomal recessively inherited disorder of the organic acid metabolism. It is caused by a deficiency of propionyl-CoA carboxylase (PCC). PCC is a heteropolymeric enzyme composed of ${\alpha}$- and ${\beta}$-subunits. The clinical symptoms of PA are heterogeneous and present vomiting, dehydration, hypotonia, and lethargy, and it can result in death. The typical presentations of neonatal onset PA are life-threatening metabolic acidosis and hyperammonemia. Here, we described a case of neonatal onset PA with mild clinical presentations. She was born to a healthy mother without complications. No significant illness was observed until nine days after birth. She started exhibiting poor oral feeding, vomiting, lethargy, and hypotonia at ten days old. Her laboratory results showed mild hyperammonemia and acidosis. The initial diagnosis was neonatal sepsis and she was treated with antibiotics. However, her clinical symptoms didn't improve. So we considered a metabolic disease. She was given nothing by mouth and intravenous hydration and nutrition support was performed. Propionylglycine and 3-hydroxypropionic acid were showed high concentrations in urine by gas chromatograph mass spectrometry (GC-MS). C3 level of acylcarnitine analysis elevated 10.4 uM/L (range, 0.200-5.00) in plasma. We took gene analysis for PA to be based on the symptoms and laboratory results. We detected PCCB gene mutation and diagnosed PA. She survived without severe neurologic defects and complications and was hospitalized only three times with upper respiratory tract infections for 7 years. We report a case of a ten days old neonate with PA presenting without severe metabolic acidosis and hyperammonemia who was effectively treated with early aggressive care and conventional methods.

  • PDF