• 제목/요약/키워드: 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGR)

검색결과 4건 처리시간 0.021초

Hypocholesterolemic Soybean Peptide (IAVP) Inhibits HMG-CoA Reductase in a Competitive Manner

  • Pak, Valeriy V.;Koo, Min-Seon;Lee, Na-Ri;Oh, Su-Kyung;Kim, Myung-Sunny;Lee, Jong-Soo;Kwon, Dae-Young
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.727-731
    • /
    • 2005
  • Synthesized Ile-Ala-Val-Pro (IAVP) peptide, which has the highest hypocholesterolemic effect among a number of synthesized derivatives of Ile-Ala-Val-Pro-Gly-Glu-Val-Ala (IAVPGEVA) isolated from 11S globulin of soy protein by pepsin digestion, was selected for investigation in the present study. Using a recombinant Syrian hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), we studied in detail the inhibition of this enzyme by IAVP and compared the action of this peptide to that of lovastatin, a known competitive inhibitor of this enzyme. The concentration of IAVP required for 50% inhibition ($IC_{50}$) of HMGR activity in given experimental conditions was $340\;{\mu}M$. Kinetic analysis revealed that the studied peptide is a competitive inhibitor of HMGR with respect to both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and nicotinamide adenine dinucleotide phosphate (NADPH), with an equilibrium constant of inhibitor binding ($K_i\;=\;[E][I]/[EI]$) of $61{\pm}1.2\;{\mu}M$ and $157{\pm}4.4\;{\mu}M$, respectively. At the same conditions, $K_i$ and $IC_{50}$ for lovastatin were $2.2{\pm}0.1\;nM$ and 12.5 nM, respectively. Thus, the given peptide interacts with HMGR as a bisubstrate, consequently blocking access of both substrates to the active sites. The achieved results suggest the design of new peptide sequences having a higher relative affinity to binding sites of this enzyme and an enhancement of their hypocholesterolemic properties.

Molecular Cloning and Functional Analysis of the Gene Encoding 3-hydroxy-3-methylglutaryl Coenzyme A Reductase from Hazel (Corylus avellana L. Gasaway)

  • Wang, Yechun;Guo, Binhui;Zhang, Fei;Yao, Hongyan;Miao, Zhiqi;Tang, Kexuan
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.861-869
    • /
    • 2007
  • The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR; EC1.1.1.34) catalyzes the first committed step of isoprenoids biosynthesis in MVA pathway. Here we report for the first time the cloning and characterization of a full-length cDNA encoding HMGR (designated as CgHMGR, GenBank accession number EF206343) from hazel (Corylus avellana L. Gasaway), a taxol-producing plant species. The full-length cDNA of CgHMGR was 2064 bp containing a 1704-bp ORF encoding 567 amino acids. Bioinformatic analyses revealed that the deduced CgHMGR had extensive homology with other plant HMGRs and contained two transmembrane domains and a catalytic domain. The predicted 3-D model of CgHMGR had a typical spatial structure of HMGRs. Southern blot analysis indicated that CgHMGR belonged to a small gene family. Expression analysis revealed that CgHMGR expressed high in roots, and low in leaves and stems, and the expression of CgHMGR could be up-regulated by methyl jasmonate (MeJA). The functional color assay in Escherichia coli showed that CgHMGR could accelerate the biosynthesis of $\beta$-carotene, indicating that CgHMGR encoded a functional protein. The cloning, characterization and functional analysis of CgHMGR gene will enable us to further understand the role of CgHMGR involved in taxol biosynthetic pathway in C. avellana at molecular level.

벼 HMG-CoA 환원효소의 특성연구 (Characterization and Purification of a Microsomal 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Rice Seedling)

  • 김제현;백융기;김종범;김종국;황영수;하선화
    • Applied Biological Chemistry
    • /
    • 제41권1호
    • /
    • pp.47-52
    • /
    • 1998
  • 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 환원효소는 식물의 병원균 방어물질 (phytoalexin), 광합성 색소 (the phytol of chlorophyll), 성장 호르몬 (abscisic acid와 gibberellin 등) 및 스테롤 (phytosterol) 등의 생합성에 관여하는 주효소이다. 암조건 하에서 발아 후 4일째의 벼 유묘 microsome을 재료로 비이온성 detergent 인 Brij W-1 (final 0.4%)을 사용하여 가용화 시킨 후, DEAE-Sephadex A-50 크로마토그래피 칼럼과 hexaneagarose를 matrix로 기질인 HMG-CoA를 결합시켜 제조한 친화성 크로마토그래피 칼럼을 이용하여 세포막 결합효소인 HMG-CoA 환원효소를 정제하였다. 정제된 HMG-CoA 환원효소의 최종 회수율은 7.14% 였고, 분자량은 10% SDS-PAGE에서 55 kDa이였다 HMG-CoA 환원효소의 최적 반응 온도는 $37^{\circ}C$, 최적 반응 pH는 6.9였고, 기질인 HMG- CoA에 대한 HMG-CoA 환원효소의 $K_m$$V_{max}$ 값은 $180\;{\mu}M$과 107 pmol/mg, 수소공여체인 NADPH에 대한 $K_m$$V_{max}$값은 $810\;{\mu}M$과 32.1 pmol/min/mg이였다.

  • PDF

Expression Patterns of Genes Involved in Carotenoid Biosynthesis in Pepper

  • Ha, Sun-Hwa;Lee, Shin-Woo;Kim, Jong-Guk;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • 제42권2호
    • /
    • pp.92-96
    • /
    • 1999
  • To study the regulatory mechanism of isoprenoid (carotenoid) biosynthesis, we have compared the expression patterns of nine isoprenoid biosynthetic genes in Korean red pepper (Capsicum. annuum cv. NocKaung). The expression of geranylgeranyl pyrophosphate synthase gene was initially induced at early ripening stage (I1) and was rather slightly decreased during pepper fruit ripening. The ex-pression of phytoene synthase gene was strongly induced at semi-ripening stage (I2) and the phytoene desaturase transcript was maximally induced at the fully ripened stage (R). Our results suggest that genes encoding two 3-hydroxy-3-methylglutaryl-CoA reductase isozymes (HMGR1 and HMGR2) and farnesyl pyrophosphate synthase might be not so critical in pepper carotenoid biosynthesis but three genes encoding geranylgeranyl pyrophosphate synthase, phytoene synthase and phytoene desaturase were induced in a sequential manner and coordinately regulated during the ripening of pepper fruit.

  • PDF