• Title/Summary/Keyword: 3-Glucanases

Search Result 16, Processing Time 0.021 seconds

Induction of Arabidopsis thaliana Chitinase by Ethylene and Elicitor Treatment (에틸렌 및 Elicitor처리에 의한 아기장대풀의 키틴 가수분해 효소 유도)

  • Kyung Hee PAEK;Seok Yoon KWON;Hye Sun CHO;Jin Sam YOU
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.6
    • /
    • pp.357-362
    • /
    • 1994
  • Chitinases and $\beta$-1,3-glucanases are believed to be important in defending plane against pathogens. Here, we investigated the expression of chitinase(s) in Arabidopsis thaliana cell suspension culture system in response to ethephon (2-chloroethyl phosphonic acid) which produces ethylene or a microbial elicitor, a bacterial pectin-degrading enzyme, $\beta$-1, 4-endopolygalactronic acid Iyase (PGA Iyase), treatment. Chitinase activity was measured either by radio chemical assay using $^3$H-labeled regenerated chitin as substrate or western blot analysis using antibody raised against tobacro chitinase(S). With 1 mg/mL of ethephon or 100 m units/mL of elicitor treatment, maximum levels of activity were reached after 48h. We also investigated distribution of chitinase activity in seedlings, leaves, and root of A. thaliana and found that root have the highest chitinase activity.

  • PDF

Complete genome sequence of Microbulbifer agarilyticus GP101 possessing genes coding for diverse polysaccharide-degrading enzymes (다양한 다당류를 분해하는 세균 Microbulbifer agarilyticus GP101의 완전한 유전체 서열)

  • Jung, Jaejoon;Bae, Seung Seob;Chung, Dawoon;Baek, Kyunghwa
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.299-301
    • /
    • 2018
  • Microbulbifer agarilyticus GP101 was isolated from the gut of a marine invertebrate Turbo cornutus and capable of degrading polysaccharide such as agar, alginate, and ${\kappa}$-carrageenan constituting algal cell wall. To obtain genomic basis of polysaccharide-degrading activity, we sequenced genome of strain GP101. The genome consists of 4,255,625 bp, 3,458 coding sequences with 55.4% G + C contents. BLASTP search revealed the presence of seven agarases, five alginate lyases, ten glucanases, four chitinases, two xylanases, one ${\kappa}$-carrageenase, and one laminarinase. The genomic data of strain GP101 will provide potential uses in the bioconversion process of diverse polysaccharide into bioenergy and biochemicals.

Effects of a Powder Formulation of Streptomyces cameroonensis on Growth and Resistance of Two Cocoa Hybrids from Cameroon against Phytophthora megakarya (Causal Agent of Black Pod Disease)

  • Aristide, Dzelamonyuy;Martial, Tene Tayo Paul;Ruth, Ngotcho Ngassam Esther;Grace, Lele Brenda;Ebenezer, Foka Tatiekam;Flore, Magni Pacha Tatiana;Thaddee, Boudjeko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.160-169
    • /
    • 2022
  • In the present study we evaluated the efficacy of a bioformulation of Streptomyces cameroonensis for control of black pod disease in cocoa and enhancement of seedling growth. The formulation developed using talc powder and cassava starch as carriers showed high shelf-life of 1.07 × 106 CFU/g after six months storage at 4℃. The formulation was tested for inhibition of spore germination in Phytophthora megakarya and showed 100% inhibition at 10% (w/v) of formulation. To determine the efficacy of the formulation, we performed an in planta assay in the greenhouse on two hybrids of cocoa seedlings, the tolerant SNK413 × (♂) T79/467 and the susceptible UPA 134× (♂) SCA 12. Detached leaf assay showed a significant reduction in the disease severity index of about 67% for the tolerant hybrid and 55% for the susceptible hybrid compared to non-treated plants. A significant enhancement in stem length, leaf surface area and root weight was observed. Analysis of biochemical markers of defense showed a significant increase in total polyphenol, flavonoid, and total protein contents. There was also significant upregulation of PR-proteins such as chitinases, peroxidases and β-1, 3-glucanases following treatment of both tolerant and susceptible hybrids, though with a higher level of synthesis in the tolerant hybrids. A significant increase was also observed in polyphenol oxidase activities in plants treated with the formulation. This work demonstrated the stability and effectiveness of the S. cameroonensis powder formulation in suppressing black pod disease in cocoa and subsequently enhancing the growth of seedlings.

(1-3, 1-4)-$\beta$-Glucan and Starch Contents and Their Hydrolytic Enzyme Activities in Developing Barley Kernels (등숙 중인 보리 종실중 (1-3, 1-4)-$\beta$-Glucan과 전분 함량 및 이들의 가수분해효소 활성)

  • 윤성중;박상래;유남희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.403-409
    • /
    • 1997
  • To obtain information on the accumulation of (1-3, 1-4)-$\beta$-glucans during kernel maturation, (1-3, 1-4)-$\beta$-glucan contents and (1-3, 1-4)-$\beta$-glucanase activities were determined in developing kernels of the two Korean cooking barley varieties, Neulssalbori and Saessalbori. (1-3, 1-4)-$\beta$-Glucan contents in kernels at 5 and 10 days after anthesis(DAA) were very low and the contents increased rapidly in kernels at 15 to 25 DAA. (1-3, 1-4)-$\beta$-Glucan content in kernels at harvest was about 3.5 to 4% of kernel dry matter. (1-3, 1-4)-$\beta$-Glucanase activities were relatively higher in younger kernels but the levels of the activity were very low compared with those in germinating kernels. A significant negative correlation was observed between (1-3, 1-4)-$\beta$-glucan contents and (1-3, 1-4)-$\beta$-glucanase activities. Low levels of (1-3, 1-4)-$\beta$-glucanase activites in kernels at 15 to 30 DAA, however, may indicate that (1-3, 1-4)-$\beta$-glucanases have little effect on the final content of (1-3, 1-4)-$\beta$-glucans in barley kernels. Starch contents and $\alpha$-amylase activities were also determined in developing barley kernels. Starch contents increased rapidly as kernels matured and the content at harvest was about 60% of kernel dry matter. Relativley higher levels of $\alpha$-amylase activities in kernels at the earlier developmental stage decreased rapidly as kernels matured.

  • PDF

Molecular Cloning and Functional Expression of Extracellular Exo-β-(1,3)-Glucanase from Candida fermentati SI (Candida fermentati SI의 exo-β-(1,3)-glucanase유전자의 클로닝 및 그 특성)

  • Lim, Yu-Mi;Kim, Bong-Ki;Kim, Sang-Jun;So, Jai-Hyun;Kim, Won-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.317-323
    • /
    • 2016
  • An isoflavone glucosidase that catalyzes the hydrolysis of isoflavone glucosides into glucose and corresponding aglycones was purified from Candida fermentati SI. The N-terminal sequence was determined to be GLNCDYCN. We designed degenerate primers on the basis of these amino acid sequences and successfully cloned the full structural gene sequence of the isoflavone glucosidase using inverse PCR. The exo-β-(1,3)-glucanase gene consists of 1227 base-pair nucleotides, encoding a 408-amino-acid sequence that shares 41–96% amino acid homology with other yeast exo-β-(1,3)-glucanases belonging to glycoside hydrolase family 5. The recombinant exo-β-(1,3)-glucanase was expressed in Pichia pastoris X-33, using a pPICZA vector system, and further characterized. The molecular mass of the purified exo-β-(1,3)-glucanase was estimated by SDS-PAGE to be 47 kDa. The optimal pH and temperature were pH 4.5 and 40℃, respectively. The Km values of the purified exo-β-(1,3)-glucanase for daidzin and genistin were 0.12 mM and 0.14 mM, respectively. The Vmax values of the purified isoflavone glucosidase were 945.03 U/mg for daidzin and 835.92 U/mg and for genistin.

Cloning and Overexpression of a Paenibacillus ${\beta}-Glucanase$ in Pichia pastoris: Purification and Characterization of the Recombinant Enzyme

  • Yang, Peilong;Shi, Pengjun;Wang, Yaru;Bai, Yingguo;Meng, Kun;Luo, Huiying;Yuan, Tiezheng;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2007
  • Isolation, expression, and characterization of a novel $endo-{\beta}-1,3(4)-D-glucanase$ with high specific activity and homology to Bacillus lichenases is described. One clone was screened from a genomic library of Paenibacillus sp. F-40, using lichenan-containing plates. The nucleotide sequence of the clone contains an ORF consisting of 717 nucleotides, encoding a ${\beta}-glucanase$ protein of 238 amino acids and 26 residues of a putative signal peptide at its N-terminus. The amino acid sequence showed the highest similarity of 87% to other ${\beta}-1,3-1,4-glucanases$ of Bacillus. The gene fragment Bg1 containing the mature glucanase protein was expressed in Pichia pastoris at high expression level in a 3-1 high-cell-density fermenter. The purified recombinant enzyme Bg1 showed activity against barley ${\beta}-glucan$, lichenan, and laminarin. The gene encodes an $endo-{\beta}-1,3(4)-D-glucanase$ (E. C. 3.2.1.6). When lichenan was used as substrate, the optimal pH was 6.5, and the optimal temperature was $60^{\circ}C$. The $K_m,\;V_{max},\;and\;k_{cat}$ values for lichenan are 2.96mg/ml, $6,951{\mu}mol/min{\cdot}mg,\;and\;3,131s^{-1}$, respectively. For barley ${\beta}-glucan$ the values are 3.73mg/ml, $8,939{\mu}mol/min{\cdot}mg,\;and\;4,026s^{-1}$, respectively. The recombinant Bg1 had resistance to pepsin and trypsin. Other features of recombinant Bg1 including temperature and pH stability, and sensitivity to some metal ions and chemical reagents were also characterized.