• Title/Summary/Keyword: 3-Dimensional module

Search Result 213, Processing Time 0.022 seconds

Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3 차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Hyun;Kim, Myung-Kuk;Chen, Seung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

A Study on Automatic Generation for 3-Dimensional Geometry of Gerotor and Hob (제로터와 호브의 3차원 형상 자동 생성에 관한 연구)

  • 정태형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.458-463
    • /
    • 1999
  • When designing a gerotor, designers determine basic dimensions of a gerotor with transmitted power considering strength, interference and so on. But, designers can not easily obtain the tooth profile generated by dimensions as well as the geometry of generating hob for cutting the tooth profile. In order to resolve these problems, an automatic design system creating not only the solid model of a gerotor but also that of the generating hob using the design parameters of dimensions is developed. Through the developed system, designers can improve the efficiency of design and satisfy the variable requirements of design as well. In this research, the three-dimensional solid model of gerotor is generated considering the design parameters. Besides, that of generating hob with respect to the design parameters of hob is created automatically. The system is developed using Visual Basic and its three-dimensional geometric modeling module is constructed using SolidWorks.

  • PDF

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF

3D Ground Terrain Processing Platform for Automated Excavation System

  • Kim, Seok;Kim, Tae-yeong;Park, Jae-Woo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.669-670
    • /
    • 2015
  • Efficient management of the construction heavy equipment is required to reduce the rate of carbon emissions and on-site accidents. The intelligent excavation system (IES) will improve the construction quality and productivity through information technologies and efficient equipment operation, especially in large earthwork projects. Three-dimensional digitized ground data should be required for identifying the path of heavy equipment and work-site environment. Rapid development of terrain laser scanners (TLS) is more readily to acquire the digital data. This study suggests the '3D ground terrain processing platform (3DGTPP)' including data manipulating module and analyzing module of the scanned data for intelligent earthmoving equipment operation. The processing platform consists of six modules, including scanning, registering, manipulating, analyzing, transmitting, and storing. 3D ground terrain processing platform presented in this study will provide fundamental information for intelligent excavation system (IES), which will increase the efficiency of earthworks and safety of workers in significant.

  • PDF

Computational Thermal Flow Analysis of a Cabin Cooler for a Commercial Vehicle (상용차용 캐빈냉방기의 전산 열유동 해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • The steady three-dimensional computational thermal flow analysis using standard k-${\varepsilon}$ turbulence model was carried out to investigate the heat transfer characteristics of a cabin cooler for a commercial vehicle. The heat exchanging method of this cabin cooler is to use the cooling effect of a thermoelectric module. In view of the results so far achieved, the air system resistance of a cabin cooler is about 12.4 Pa as a static pressure, and then the operating point of a cross-flow fan considering in this study is formed in the comparatively low flowrate region. The air temperature difference obtained from the cold part of an thermoelectric module is about $26^{\circ}C$, and the cooling water temperature difference obtained from the hot part of an thermoelectric module is about $3.5^{\circ}C$.

A Study on the Process Design Expert System in Motor-Frame Die of an Automobile (자동차 모터 프레임 금형의 공정설계 전문가 시스템에 관한 연구)

  • Bae W. R.;Park D. H.;Park S. B.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.132-135
    • /
    • 2000
  • A process design expert system for rotationally symmetric deep drawing products has been developed The application of the expert system to non-axisymmetric components, however, has not been reported yet. Thus, in this present study, the expert system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first one is a recognition of shape module to recognize non-axisymmetric products. The second one is three dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third one is a blank design module to create an oval-shaped blank with the identical surface area. The forth one is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers.

  • PDF

Fabrication of Infrared Filters for Three-Dimensional CMOS Image Sensor Applications

  • Lee, Myung Bok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.341-344
    • /
    • 2017
  • Infrared (IR) filters were developed to implement integrated three-dimensional (3D) image sensors that are capable of obtaining both color image and depth information at the same time. The combination of light filters applicable to the 3D image sensor is composed of a modified IR cut filter mounted on the objective lens module and on-chip filters such as IR pass filters and color filters. The IR cut filters were fabricated by inorganic $SiO_2/TiO_2$ multilayered thin-film deposition using RF magnetron sputtering. On-chip IR pass filters were synthetized by dissolving various pigments and dyes in organic solvents and by subsequent patterning with photolithography. The fabrication process of the filters is fairly compatible with the complementary metal oxide semiconductor (CMOS) process. Thus, the IR cut filter and IR pass filter combined with conventional color filters are considered successfully applicable to 3D image sensors.

Ubiquitous Car Maintenance Services Using Augmented Reality and Context Awareness (증강현실을 활용한 상황인지기반의 편재형 자동차 정비 서비스)

  • Rhee, Gue-Won;Seo, Dong-Woo;Lee, Jae-Yeol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.3
    • /
    • pp.171-181
    • /
    • 2007
  • Ubiquitous computing is a vision of our future computing lifestyle in which computer systems seamlessly integrate into our everyday lives, providing services and information in anywhere and anytime fashion. Augmented reality (AR) can naturally complement ubiquitous computing by providing an intuitive and collaborative visualization and simulation interface to a three-dimensional information space embedded within physical reality. This paper presents a service framework and its applications for providing context-aware u-car maintenance services using augmented reality, which can support a rich set of ubiquitous services and collaboration. It realizes bi-augmentation between physical and virtual spaces using augmented reality. It also offers a context processing module to acquire, interpret and disseminate context information. In particular, the context processing module considers user's preferences and security profile for providing private and customer-oriented services. The prototype system has been implemented to support 3D animation, TTS (Text-to-Speech), augmented manual, annotation, and pre- and post-augmentation services in ubiquitous car service environments.

A Design and Implementation of Remote Monitoring and Control Environments Using 3-Dimensional Camera Multimedia System Based on RTLinux (RTLinux기반의 3차원 입체 카메라 멀티미디어 시스템을 이용한 원격 감시 및 제어 환경 설계 및 구현)

  • Lee Jeong-Bae;Choi Gil-Lim;Kim Tae-Gyun;Kim Sam-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1412-1420
    • /
    • 2004
  • This thesis is dealing with conveyer remote monitoring and control system for shoes process formed by client/server, which is based on Web. Modules for watching and controlling images in a remote by client is manufactured under JAVA, and conveyer server for real-time controlling is founded on RTLinux. And device driver and APIs are developed based on it. Through both manufacturing these software and LEGO-based prototyping, it would present the real-time conveyer controlling system founded on Web and 3-dimensional stereo camera to be applied to industrial spots.

  • PDF

Collision Analysis of the Next Generation High-speed EMU Using 3D/1D Hybrid FE Model (3D/1D 하이브리드 유한요소 모델을 이용한 동력 분산형 차세대 고속열차 전체차량의 충돌 해석)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • In this paper, collision analysis of the full rake for the Next Generation High-speed EMU is conducted using a 3D/1D hybrid model, which combines 3-dimensional (3D) front-end structure of finite element model and 1-dimensional (1D) multi-body dynamics model in order to analyze train collision with a standard 3D deformable obstacle. The crush forces, passengers' accelerations and energy absorptions of a full rake train can be easily obtained through a simulation of a 1D dynamics model composed of nonlinear springs, dampers and masses. Also the obtained simulation results are very similar to those of a 3D model if an overriding behavior does not occur during collision. The standard obstacle in TSI regulation has been changed from a rigid body to a deformable body, and therefore 3D collision simulations should be conducted because their simulation results depends on the front-end structure of a train. According to the obstacle collision analysis of this study, the obstacle collides with the driver's upper structure after overriding over the front-end module. The 3D/1D hybrid model is effective to evaluate a main energy-absorbing module that is frequently changed during design process and reduce the need time of the modeling and analysis when compared to a 3D full car body.