• 제목/요약/키워드: 3-Dimensional model test

검색결과 519건 처리시간 0.022초

소표본에서 차이측도 통계량의 비교연구 (A Monte Carlo Comparison of the Small Sample Behavior of Disparity Measures)

  • 홍종선;정동빈;박용석
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.455-467
    • /
    • 2003
  • 소표본 분할표 자료에서 적합도 검정통계량들의 카이제곱 근사 적용 가능에 대하여 많은 연구가 진행되었다. 소표본에서 세 가지 검정 통계량(피어슨 카이제곱 Χ$^2$, 일반화 가능도비 G$^2$, 그리고 역발산 Ι(2/3) 검정통계량)에 관하여 비교한 Rudas(1986)의 연구를 확장하여, 최근에 제안된 차이측도(BWHD(1/9), BWCS(1/3), NED(4/3) 검정통계량)를 포함시켜 비교 분석하였다. 독립모형의 이차원 분할표, 조건부 독립모형과 한 변수 독립 모형을 따르는 삼차원 분할표에 대한 모의실험을 통하여 생성된 90과 95 백분위수와 이에 대응하는 95% 신뢰구간을 살펴보고 실제 백분위수와 비교하였다. 그 결과 Χ$^2$, Ι(2/3), 그리고 BWHD(1/9) 검정통계량이 유사한 결과를 나타내었고 이 통계량들이 기존에 제안된 검정통계량들보다 적은 표본크기에서도 카이제곱 근사방법에 적용 가능함을 발견하였다.

Flexible Segment가 설치된 병렬터널의 지진시 동적거동 (Seismic behaviors of twin tunnel with flexible segment)

  • 곽창원;박인준
    • 한국터널지하공간학회 논문집
    • /
    • 제17권6호
    • /
    • pp.695-702
    • /
    • 2015
  • 원심모형시험은 최근의 기계적, 이론적 발전에 따라 그 활용도와 정확성이 높아지고 있다. 원심모형시험은 원지반 응력을 효과적으로 재현할 수 있으므로 주위 지반 또는 암반과 상호작용을 하는 터널과 같은 지하구조물의 거동을 모사하기 적합하다. 본 연구에서는 병렬 터널의 지진시 동적 거동을 원심모형시험을 통하여 분석하였다. 터널 모델링시 지진에 의해 발생하는 최대 가속도 저감을 위하여 Flexible segment를 고려하였으며 Flexible segment의 두께가 얇은 경우와 두꺼운 경우를 각각 고려하였다. 시험 결과 Flexible segment의 지진시 터널 구조물에 발생하는 최대 가속도 저감 효과를 확인하였다. 그러나 Flexible segment가 얇은 경우 단주기파 적용시 최대가속도의 저감효과는 없었고, 두꺼운 경우 기반암 가속도가 클 경우 보다 효과적임을 확인하였다. 또한 동일 모델에 대하여 3차원 수치해석을 수행하여 지진시 거동을 파악한 결과, 시험 결과와 유사한 경향을 보임을 확인할 수 있었다.

유연한 벽면을 가진 사각형 물탱크의 설계지진력 산정 (Seismic Design Force for Rectangular Water Tank with Flexible Walls)

  • 김민우;유은종;박지훈
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.303-310
    • /
    • 2023
  • The equivalent static load for non-structural elements has a limitation in that the sloshing effect and the interaction between the fluid and the water tank cannot be considered. In this study, the equations to evaluate the impulse and convective components in the design codes and previous research were compared with the shaking table test results of a rectangular water tank with flexible wall panels. The conclusions of this study can be summarized as follows: (1) It was observed that the natural periods of the impulsive component according to ACI 350.3 were longer than system identification results. Thus, ACI 350.3 may underestimate the earthquake load in the case of water tanks with flexible walls. (2) In the case of water tanks with flexible walls, the side walls deform due to bending of the front and back walls. When such three-dimensional fluid-structure interaction was included, the natural period of the impulsive component became similar to the experimental results. (3) When a detailed finite element (FE) model of the water tank was unavailable, the assumption Sai = SDS could be used, resulting in a reasonably conservative design earthquake load.

T300/924C 탄소섬유/에폭시 복합재 적층판의 이차원 압축 강도의 크기효과 및 좌굴방지장치의 영향 (Two Dimensional Size Effect on the Compressive Strength of T300/924C Carbon/Epoxy Composite Plates Considering Influence of an Anti-buckling Device)

  • 공창덕;방조혁;이정환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.88-91
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section (length x width) was investigated on the compressive behavior of a T300/924 [45/-45/0/90]3s, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a 30$\times$30, 50$\times$50, 70$\times$70, and 90mm$\times$90mm gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

  • PDF

손상변수기반 점진적 파손이론을 이용한 복합재 이중 겹침 볼트 체결부의 강도 해석 (Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables)

  • 김상국;권진회
    • Composites Research
    • /
    • 제26권2호
    • /
    • pp.91-98
    • /
    • 2013
  • 복합재 이중-겹침 볼트 체결부의 파손을 예측하기 위해 손상계수를 고려한 강성저하 방법과 Hashin의 3차원 파손판정식에 근거한 3차원 유한요소해석 방법을 제안하였다. 기지 혹은 면내(In-plane) 전단 손상을 고려하기 위해 손상변수를 이용하는 Ladeveze 이론을 섬유방향 강성저하와 연계하여 사용하였고, 수지 압축/전단, 수지 인장/전단, 섬유압축, 섬유 인장 등 4가지 파손모드를 고려하였다. 상업용 유한요소 프로그램인 ABAQUS를 이용하여 마찰력과 볼트 체결력을 고려하였고, 강성저하모델 처리를 위해 ABAQUS의 사용자 정의 부프로그램을 이용하였다. 제안된 유한요소해석 방법을 검증하기 위해 복합재 이중겹침 볼트 체결부 시험 결과와 파손강도를 비교한 결과 7~16% 오차를 보임을 확인하였다.

인공치와 의치상의 재질에 따른 의치상 하부 지지조직에의 응력전달에 관한 연구 (A STUDY OF THE STRESS TRANSMISSION OF VARIOUS ARTIFICIAL TEETH AND DENTURE BASE MATERIALS TO THE UNDER-LYING SUPPORTING TISSUES)

  • 정형곤;정문규;이호용
    • 대한치과보철학회지
    • /
    • 제27권2호
    • /
    • pp.79-100
    • /
    • 1989
  • The Purpose of this study was to investigate material differences in stress transmission among various artificial teeth and denture base materials. For this study, a two-dimensional finite element model and a two-dimensional photoelastic model of a mandible with complete denture were made. A resin tooth and a porcelain tooth were used as artificial teeth, and a resin base, a metal lined base, and a soft-liner lined base were used as denture bases. An occlusal load was applied and principal stresses generated in the supporting tissues were compared. To test the impact stress transmission, strain gauge attached to the denture base specimens made of the different materials were made in thick and thin groups. Voltage outputs from hitting the specimen with a steel ball were compared. The results were as follows : 1. In FEM, increasing the mucosal thickness reduced the maximum principal stresses in the supporting tissues, but altering the tooth materials and the base materials induced no difference in the stresses. 2. In photoelastic model study, no difference in fringe order among the specimens were observed, but the thick mucosa group and the soft-liner lined group revealed a more uniform distribution of the load. 3. In strain measuring, the impact force transmission was highest in the soft-liner lined group, and was the lowest in the metal lined group(p<0.01). 4. In the thin group using the resin base, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the thick group. In the soft-liner lined group, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the metal lined group. 5. The thick group showed lower impact stress transmission than the thin group(p<0.01).

  • PDF

Structure Optimization of ESD Diodes for Input Protection of CMOS RF ICs

  • Choi, Jin-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권3호
    • /
    • pp.401-410
    • /
    • 2017
  • In this work, we show that the excessive lattice heating problem due to parasitic pnp transistor action in the diode electrostatic discharge (ESD) protection device in the diode input protection circuit, which is favorably used in CMOS RF ICs, can be solved by adopting a symmetrical cathode structure. To explain how the recipe works, we construct an equivalent circuit for input human-body model (HBM) test environment of a CMOS chip equipped with the diode protection circuit, and execute mixed-mode transient simulations utilizing a 2-dimensional device simulator. We attempt an in-depth comparison study by varying device structures to suggest valuable design guidelines in designing the protection diodes connected to the $V_{DD}$ and $V_{SS}$ buses. Even though this work is based on mixed-mode simulations utilizing device and circuit simulators, the analysis given in this work clearly explain the mechanism involved, which cannot be done by measurements.

해운대 해수욕장에 있어서의 양빈공법에 관한 실험적 연구 (An Experimental Study on the Beach Nourshment Method of HAE UN DAE Beach)

  • 민병형;옥치율;유상호
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.84-93
    • /
    • 1987
  • A beach nourishment method can be used as one of the beach erosion protection methods which may keep coastal environments whithout constructing coastal structures on the HAE UN DAE beach. The beach nourishmens is affected by a natural condition and artificial condition;a natural condition includes conditions of bottom slope, diameter of bottom materials and waves, and artificial conditions include deposit position, method, diameter and quantity of the nourishing sand. It has accomplished to obtain the deposit position and the best diameter of the nourishing sand from a two-dimensional hydraulic model test, which simulates the erosional HAE UN DAE beach. In this study, the protection of the beach erosion can be maximized when the nourishing sand of 3.3mm in diameter, which is about 5.5.times of the bottom materials in diameter, is deposited layerly in front of the breaker zone which has a water depth of 4.6m.

  • PDF

유한요소프로그램을 이용한 철도판형교의 동적거동 (Dynamic Behavior of Plate Girder Railway Bridges using the Finite Element Code)

  • 오지택;송재필;김기봉;김현호
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.228-234
    • /
    • 2005
  • Investigation on the dynamic behavior of railway bridges has not performed widely to date except high-speed railway bridges. In this study, 3-dimensional model is used for the finite element analysis of plate girder railway bridges. Train loads obtained through statistical approach of the measured true train loads are used. Numerical analysis is carried out about a 18m-span bridge. This result is compared with that of the experimental test of existing plate gilder railway bridge without ballast. The good agreement was obtained through the comparison. Judging from the analysis, resonant speed of diesel locomotive train is about 120km/h. However, the resonance for the other train is not found from the analysis.

전산유체역학을 이용한 NREL Phase VI 풍력터빈의 축소효과 보정 (Scale Effect Corrections of NREL Phase VI Wind Turbine by Using Computational Fluid Dynamics)

  • 박영민;장병희
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.54-62
    • /
    • 2007
  • The present paper describes the scale effect correction methods for scaled NREL Phase VI wind turbines by using CFD[computational fluid dynamics). For the corrections of wind turbine scale effect, various researches on the helicopter rotor scale effect were investigated and the feasibility study of the methods was performed to correct wind turbine scale effect. The present paper also introduces scale effect correction methods based on two dimensional lift slope. In order to test the present method, performance analyses of NREL Phase VI wind turbines under various scale conditions were carried out and new correction method was applied. Granting that the new correction method is valid only above Reynolds No. 100,000, it showed reasonable agreement between model and full scale wind turbines in the linear torque region.

  • PDF