• Title/Summary/Keyword: 3-Dimensional Viscous Flow

Search Result 116, Processing Time 0.026 seconds

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Up - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(II) - Common Flow Up에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.799-807
    • /
    • 2005
  • The flow characteristics and the heat transfer rate on a surface by the interaction of a pair of vortices are studied numerically. To analyze the common flow up produced by vortex generators in a rectangular channel flow, the pseudo-compressibility viscous method is introduced into the Reynolds-averaged Navier-Stokes equation for 3-dimensional unsteady, incompressible viscous flows. To predict turbulence characteristics, a two-layer $k-\varepsilon$ turbulence model is used on the flat plate 3-dimensional turbulence boundary The computational results predict accurately Reynolds stress, turbulent kinetic energy and flow field generated by the vortex generators. The numerical results, such as thermal boundary layers, skin friction characteristics and heat transfers, are also reasonably close to the experimental data.

Three-Dimensional Numerical Study on the Vortex Flow in a Horizontal Channels with High Viscous Fluid(2) (수평채널 내 고 점성유체의 볼텍스 유동에 관한 3차원 수치해석(2))

  • Piao, Ri-Long;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of Power System Engineering
    • /
    • v.19 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • TMixed convective flow in a bottom heated and top cooled rectangular channel can be significantly affected by the channel aspect ratio, Prandtl number, Reynolds number, Rayleigh number and angle of inclination. In such a mixed convection, the flow pattern plays an important role in various technological processes. In this study, a numerical investigation is carried out to explore mixed convection in a three-dimensional rectangular channel with bottom heated and top cooled uniformly. The three-dimensional governing equations are discretized using the finite volume method. In the range of low Reynolds number($0{\leq}Re{\leq}9.6{\times}10^{-2}$), the effects of the aspect ratio($2{\leq}AR{\leq}12$) and Gr/Re are presented and discussed. The longitudinal roll number in the channel is increased with increasing aspect ratio, and the roll number induced, regardless of the aspect ratio number, is even in the range of aspect ratios between 2 and 12, New vortex flow structure containing inclined longitudinal rolls is found, which is affected by aspect ratio and Reynolds number. The ratio Gr/Re is used to check the relative magnitudes of forced and natural convection in the mixed convective flow of high viscous fluid.

Numerical Simulation of Three-Dimensional Compressible Viscous Flow Characteristics in Axial-Flow Turbines (축류터빈 내부의 3차원 압축성 점성 유동특성에 관한 수치 시뮬레이션)

  • Chung H. T.;Jung H. N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.42-48
    • /
    • 2004
  • Numerical simulation of viscous compressible flow in turbomachinery cascade involves many problems due to the complex geometry of blade but also flow phenomena. In the present study, numerical investigations have been performed to examine the three-dimensional flow characteristics inside the transonic linear turbine cascades using a commercial code, FLUENT. Multi-block H-type grids are applied to the high-turning turbine rotor blades and comparisons with the experimental data and the numerical results have been done. In addition, the effects of turbulence models on the prediction of the endwall flows are analyzed in the sense of the flow compressibility.

  • PDF

Numerical Simulation of Turbine Cascade Flowfields Using Two Dimensional Compressible Navier-Stokes Equations (2차원 압축성 Navier-Stokes 방정식에 의한 터빈 익렬유동장의 수치 시뮬레이션)

  • Chung, H.T.;Kim, J.S.;Sin, P.Y.;Choi, B.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.16-21
    • /
    • 1999
  • Numerical simulation on two-dimensional turbine cascade flow has been performed using compressible Navier-Stokes equations. The flow equations are written in a cartesian coordinate system, then mapped into a generalized body-fitted ones. All direction of viscous terms are incoporated and turbulent effects are modeled using the extended ${\kappa}-{\epsilon}$ model. Equations are discretized using control volume SIMPLE algorithm on the nonstaggered grid sysetem. Applications are made at a VKI turbine cascade flow in atransonic wind-tunnel and compared to experimental data. Present numerical results are shown to be in good agreement with the experimental results and simulate the compressible viscous flow characteristics inside the turbine blade passage.

  • PDF

Numerical study on flows within an shrouded centrifugal impeller passage (원심회전차 내부유도장에 관한 수치해석적 연구)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3272-3281
    • /
    • 1996
  • The flow analysis method which had been developed for the numerical calculation of 3-dimensional, incompressible and turbulent flow within an axial compressor was extended to the flow field within centrifugal impeller. In this method based on the SIMPLE(Semi Implicit Method Pressure Linked Equations) algorithm, the coordinate transformation was adopted and the standard k-.epsilon. model using wall function was used for turbulent flow analysis. The calculated flow fields have agreed very well with measurement results. Especially, 3-dimensional and viscous flow characteristics including secondary flows, jet-wake flow and decreased pressure rise along impeller passage, which can't be predicted by inviscid Q3D calculation were predicted very reasonably.

Numerical Analysis on the Low Momentum Fluid Flow Characteristics in Centrifugal Pump Impeller (원심 펌프 회전차 내부의 저 운동량 유동특성에 관한 수치적 연구)

  • 김세진;김동원;김윤제
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.151-157
    • /
    • 1999
  • In this study, tile characteristics of three dimensional flow fields in centrifugal flump impeller are investigated by numerically. Detailed analysis and understanding of flow field in centrifugal pump are very important to predict performance of components. The three dimensional viscous fluid flow in centrifugal pump is distingushed isentropic process region from irreversible process region by wall shear effect, secondary flow, centrifugal and Coriolis forces, variation of boudary layers. Development of low momentum region by viscous fluid flow in the centrifugal impeller causes stall and blockage which is irreversible process region, and resulting in decrease of the performance and efficiency of centrifugal pump. Especially, the result is that Coriolis and centrifugal forces are most powerful factors which are increasing the irreversible region.

  • PDF

CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM (다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성)

  • Park, G.M.;Lee, D.J.;Lee, J.H.;Yoon, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.

3-Dimensional Computations within the Flow Passage of the Steam Turbine Nozzle with and without Tip Clearance (증기 터빈 노즐에서의 익단 간극에 의한 3차원 유동장의 수치 해석적 연구)

  • Jo, Su-Yong;O, Gun-Seop;Kim, Su-Yong;Yun, Ui-Su
    • 연구논문집
    • /
    • s.25
    • /
    • pp.55-65
    • /
    • 1995
  • Three-dimensional incompressible turbulent flow fields within the passage of the steam turbine nozzle with/without tip clearance have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The extended k-e model is applied to modeling the Reynolds stresses. Grids in the computational domain are generated by solving the Poisson's equations to improve the smoothness and orthogonality. Flow losses, secondary flow, velocity profiles, and deviation angles are obtained. The computated results without tip clearance show good agreement with the experimental data.

  • PDF

Numerical Study on Tip Clearance Effect on Performance of a Centrifugal Compressor (익단간극이 원심압축기 성능에 미치는 영향에 관한 수치해석적 연구)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.389-397
    • /
    • 2003
  • Effect of tip leakage flow on through flow and performance of a centrifugal compressor impeller was numerically studied using CFX-TASC flow. Seven different tip clearances were used to consider the influence of tip clearance on performance. Secondary flow and loss factor were evaluated to understand the loss mechanism inside the impeller due to tip leakage flow. The calculated results were circumferentially averaged along the passage and at the impeller exit for quantitative discussion. Tip clearance effect on Performance could be decomposed into inviscid and viscous components using one dimensional equation. The inviscid component is related with the specific work reduction and the viscous component is related with the additional entropy generation. Two components affected Performance equally. while efficiency drop was mainly influenced by viscous loss. Performance and efficiency drop due to tip clearance were proportional to the ratio of tip clearance to exit blade height. A simple model suggested in the present study predict performance and efficiency drop quite successfully.

Performance analysis of Savonius Rotor for Wave Energy Conversion using CFD

  • Zullah, Mohammed Aisd;Choi, Young-Do;Kim, Kyu-Han;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.600-605
    • /
    • 2009
  • A general purpose viscous flow solver Ansys CFX is used to study a Savonius type wave energy converter in a 3D numerical viscous wave tank. This paper presents the results of a computational fluid dynamics (CFD) analysis of the effect of blade configuration on the performance of 3 bladed Savonius rotors for wave energy extraction. A piston-type wave generator was incorporated in the computational domain to generate the desired incident waves. A complete OWC system with a 3-bladed Savonius rotor was modeled in a three dimensional numerical wave tank and the hydrodynamic conversion efficiency was estimated. The flow over the rotors is assumed to be two-dimensional (2D), viscous, turbulent and unsteady. The CFX code is used with a solver of the coupled conservation equations of mass, momentum and energy, with an implicit time scheme and with the adoption of the hexahedral mesh and the moving mesh techniques in areas of moving surfaces. Turbulence is modeled with the k.e model. Simulations were carried out simultaneously for the rotor angle and the helical twist. The results indicate that the developed models are suitable to analyze the water flows both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for all the cases.

  • PDF