• Title/Summary/Keyword: 3-Dimensional Flow Analysis

Search Result 960, Processing Time 0.044 seconds

Effect of Guide Vane on the Performance of Impulse Turbine for Wave Energy Conversion

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.1-7
    • /
    • 2004
  • This paper deals with the performance analysis of the impulse turbine for a owe type wave energy conversion device. Numerical analysis was performed using the commercially-available software FLUENT. This parametric study includes variation of the setting angle of the guide vane. Since parametric study at various flow coefficients requires a tremendous amount of computing time, two-dimensional cascade flow approximation was employed to determine the optimum principal particulars in a rather simple manner. A Full three-dimensional calculation was also performed for several cases to confirm the validity of the two-dimensional approach. Results were compared to other experimental data, such as Setoguchi et al. (2001)'s extensive set of data, and found that the usefulness of 2-D analysis was well demonstrated. The advantages of each method were also evaluated.

3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션)

  • Choi, Goon-Ho;Jun, Jae-Hyoung;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-201
    • /
    • 2020
  • It has been widely known that the effect of diffracted waves at the tip of composite breakwater with finite length causes the change of standing wave height along the length of breakwater, the spatial change of wave pressure on caisson, and the occurrence of meandering damage on the different sliding distance in sequence. It is hard to deal with the spatial change of wave force on trunk of breakwater through the two-dimensional experiment and/or numerical analysis. In this study, two and three-dimensional numerical techniques with olaFlow model are used to approach the spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, it is thoroughly studied the mean wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis. In conclusion, it is confirmed that the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure checked by not two-dimensional analysis, but three-dimensional analysis through the change of wave pressure applied to the caisson along the length of breakwater.

Wall Heat Conduction and Convection Heat Transfer from a Cylinder in Cross Flow (원형 실린더 주위의 전도-대류 열전달)

  • 이상봉;이억수;김시영
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • With uniform heat generation within the wall of the cylinder placed in a cross flow, heat flows by conduction in the circumferential direction due to the asymmetric nature of the fluid flow around the perimeter of the cylinder. The circumferential heat flow affects the wall temperature distribution to such an extent that in some cases significantly different results may be obtained for geometrically similar surfaces. In the present investigation, the effects of circumferential wall heat conduction on local convective heat transfer is investigated for the case of forced convection around horizontal cylinder in cross flow of air. Two-dimensional temperature distribution $T_w$/(${\gamma}$,${\theta}$) is presented through the numerical analysis. The one-dimensional and two-dimensional solutions are in good agreement with experimental results of local heat transfer coefficients.

  • PDF

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

The study of three dimentional flow field using defocusing method in micromixer (Defocusing 기법을 이용한 마이크로 믹서내의 3 차원 유동장 측정연구)

  • Kim, Su-Heon;Yoon, Sang-Youl;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.99-102
    • /
    • 2005
  • This study was conducted for obtaining the optimized data to build the mixer or micro fluid device as measuring the three dimensions flow field in micro mixer. To acquire the rapid diffusion on the region of low Reynolds (Re < 100), the staggered herringbone mixer using chaotic advection was selected in this case. At first, by conducting the numerical analytical virtual experiment using CFD-ACE+, three dimensions flow field in the micro mixer was estimated As this flow field was proven using defocusing particle tracing method, the behavior of micro flow with three dimensional aspects could be analyzed. Numerical analysis and flow pattern in the micro mixer by experimental verification made to be able to analyze the chaotic advection. These can be important sources for building more optimized form. Verifying the information of three dimensional flow structure, these information can be used as the data for developing and improving the $\mu$ -TAS.

  • PDF

Development of an axial flow fan for a refrigerator by in-house design system (팬 설계 시스템에 의한 냉장고용 축류팬 개발)

  • 최동규;최원석;박성관
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.85-92
    • /
    • 1997
  • An axial flow fan design system has been made by integrating the self-developed programs and I-DEAS. By using the system, an axial flow fan was designed, manufactured and verified through the wind tunnel experiments in coorperation with a refrigerator appliance division. It has been shown that the optimal design without the ambiguity of the design parameters can be possible by the three-dimensional flow simulations using a self-developed CID code, FANS-3D. (Flow Analysis code using Navier Stokes aguations in Three-Dimensional curvilinear coordinates). By virtue of the fluency of the data flow, an optimally designed fan which satisfies design conditions can be selected in a short time and less cost. The manufacturing processes of a Mock-up and an injection molding die have been automated through the self-made interface programs which connnect from the start to the end. It has been shown that the newly developed fan by this system has a superior performance characteristics to an existing fan.

  • PDF

A Study on the Three-Dimensional Heat Flow Analysis in the Laser Welding for Deep Penetration (레이저 심 용입 용저에서 3차원 열유동 해석에 관한 연구)

  • 이규태;김재웅
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.76-82
    • /
    • 2000
  • In this study, three-dimensional heat flow in laser beam welding for deep penetration was analyzed by using F.E.M common code, and then the results were compared with the experimental data. The models for analysis are full penetration welds and are made at three different laser powers (6, 9.9, 4.5 kW) with two different welding speeds (5.8mm/s, 5mm/s). The characteristics of thermal absorption by the workpiece during deep penetration laser welding can be represented by a combination of line heat source through the workpiece and distributed heat source at the top surface due to the plasma plume above the top surface. This gives an insight into the way in which the beam interacts with the material being welded. The analyses performed with the combined heat source models show comparatively good agreement between the experimental and calculated melt temperature isotherm, i.e, the fusion zone boundary. The results are used to explain the "nail head" appearance of fusion zone, which is quite common in laser beam welds.eam welds.

  • PDF

Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine (SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석)

  • Kim, Y.N.;Lee, K.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

The development of high fidelity Steam Generator three dimensional thermal hydraulic coupling code: STAF-CT

  • Zhao, Xiaohan;Wang, Mingjun;Wu, Ge;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.763-775
    • /
    • 2021
  • The thermal hydraulic performances of Steam Generator (SG) under both steady and transient operation conditions are of great importance for the safety and economy in nuclear power plants. In this paper, based on our self-developed SG thermal hydraulic analysis code STAF (Steam-generator Thermalhydraulic Analysis code based on Fluent), an improved new version STAF-CT (fully Coupling and Transient) is developed and introduced. Compared with original STAF, the new version code STAF-CT has two main functional improvements including "Transient" and "Fully Three Dimensional Coupling" features. In STAF-CT, a three dimensional energy transferring module is established which can achieve energy exchange computing function at the corresponding position between two sides of SG. The STAF-CT is validated against the international benchmark experiment data and the results show great agreement. Then the U-shaped SG in AP1000 nuclear power plant is modeled and simulated using STAF-CT. The results show that three dimensional flow fields in the primary side make significant effect on the energy source distribution between two sides. The development of code STAF-CT in this paper can provide an effective method for further SG high fidelity research in the nuclear reactor system.

Development of 1-3 Dimensional Hybrid Mesh Method for Flow Analysis of the Ultra-High Speed Vehicle Inside a Long Distance Tunnel (장거리 터널 내 고속 운송체의 유동 해석을 위한 1-3차원 혼합격자 기법개발)

  • Choi, Joong-Keun;Kim, Tae-Kyung;Kwon, Hyeok-Bin;Kim, Kyu-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.119-127
    • /
    • 2011
  • This paper shows development of 1-3 dimensional hybrid mesh method to analysis flow induced by ultra-high speed vehicle inside a long distance tunnel. For three-dimensional analysis of the tunnel system many meshes are required. However it is not efficient to calculate the whole tunnel system in three-dimension. Therefore in this paper, three-dimension meshes was used to describe stations, shafts and around vehicle, and one-dimension meshes was used to describe the tunnel except these three sections. And unsteady flow analysis of the ultra-high speed vehicle was performed with UDFs in commercial software, Ansys vr. 12.0.

  • PDF