• Title/Summary/Keyword: 3-D visualization program

Search Result 74, Processing Time 0.026 seconds

Development of the 3-D Fracture Network Analysis and Visualization Software Modules (삼차원 불연속면 연결구조 해석 및 가시화 소프트웨어 모듈 개발)

  • Noh, Young-Hwan;Choi, Yosoon;Um, Jeong-Gi;Hwang, Sukyeon
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.261-270
    • /
    • 2013
  • As part of the development of the 3-D geologic modeling software, this study addresses on new development of software modules that can perform the analysis and visualization of the fracture network system in 3-D. The developed software modules, such as BOUNDARY, DISK3D, FNTWK3D, CSECT and BDM, are coded on Microsoft Visual Studio platform using the MFC and OpenGL library supported by C++ program language. Each module plays a role in construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes, production of cross-section map and management of borehole data, respectively. The developed software modules for analysis and visualization of the 3-D fracture network system can be used to tackle the geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses. All these benefits will further enhance the economic competitiveness of the domestic software industry.

3-D Spatial Data Modeling Software (3차원 공간자료 모델링 소프트웨어 개발)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2002
  • We developed a modeling and visualization software that can analyze 3-dimensional spatial information in the ArcView environment. The software constructs and visualizes an object in 3 dimensional space from the input data given a number of horizontal cross-sections. The software can generate and visualize the cross-sections of the object in any azimuth and inclination. Utilizing the program users can modify the 3-D shape of the object by interactively editing the cross-sections.

Study on a post-processing program for flow analysis based on the object-oriented programming concept (객체재향 개념을 반영한 유동해석 후처리 프로그램에 대한 연구)

  • Na J. S.;Kim K. Y.;Kim B. S.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2004
  • In the present study, a post-processing program is developed for 3D data visualization and analysis. Because the graphical user interface(GUI) of the program is based on Qt-library while all the graphic rendering is performed with OpenGL library, the program runs on not only MS Windows but also UNU and Linux systems without modifying source code. The structure of the program is designed according to the object-oriented programming(OOP) concept so that it has extensibility, reusability, and easiness compared to those by procedural programming. The program is organized as modules by classes, and these classes are made to function through inheritance and cooperation which is an important and valuable concept of object-oriented programming. The major functions realized so far which include mesh plot, contour plot, vector plot, streamline plot, and boundary plot are demonstrated and the relevant algorithms are described.

Methods of Discontinuity Network Visualization in 3-D (불연속면 연결구조의 삼차원 가시화 기법에 관한 연구)

  • Noh, Young-Hwan;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.449-458
    • /
    • 2012
  • A sound understanding of the structural characteristics of fractured rock masses is important in designing and maintaining earth structures because their strength, deformability, and hydraulic behavior depend mainly on the characteristics of discontinuity network structures. Despite considerable progress in understanding the structural characteristics of rock masses, the complexity of discontinuity patterns has prevented satisfactory analysis based on a 3-D rock mass visualization model. This paper presents the results of studies performed to develop rock mass visualization in 3-D to analysis the mechanical and hydraulic behavior of fractured rock masses. General and particular solutions of non-linear equations of disk-shaped fractures have been derived to calculated lines of intersection and equivalent pipes. Also, program modules have been developed to perform the calculations. The procedures developed for the 3-D fractured rock mass visualization model can be used to characterize rock mass geometry and network systems effectively. The results obtained in this study will be refined and then combined for use as a tool for assessing geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

DEVELOPMENT OF THREE DIMENSIONAL MEASURING PROGRAM WITH FRONTAL AND LATERAL CEPHALOMETRIC RADIOGRAPHS -PART 2. 3-D VISUALIZATION AND MEASURMENT PROGRAM FOR MAXILLOFACIAL STRUCTURE- (정모 및 측모 두부 방사선 규격사진을 이용한 3차원 계측 프로그램의 개발 -2. 악안면 구조에 대한 3차원적 시각화 및 측정프로그램 개발-)

  • Lee, Sang-Han;Mori, Yoshihide;Minami, Katsuhiro;Lee, Geun-Ho;Kwon, Tae-Geon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.4
    • /
    • pp.321-329
    • /
    • 2001
  • To establish systematic diagnosis and treatment planning of dentofacial deformity patient including facial asymmetry or hemifacial microsomia patient, comprehensive analysis of three dimensional structure of the craniofacial skeleton is needed. Even though three dimensional CT has been developed, landmark identification of the CT is still questionable. In recent, a method for correcting cephalic malpositioning that enables accurate superimposition of the landmarks in different stages without using any additional equipment was developed. It became possible to compare the three-dimensional positional change of the maxillomandible without invasive procedure. Based on the principle of the method, a new program was developed for the purpose of diagnosis and treatment planning of dentofacial deformity patient via three dimensional visualization and structural analysis. This program enables us to perform following menu. First, visualization of three dimensional structure of the craniofacial skeleton with wire frame model which was made from the landmarks observed on both lateral and frontal cephalogram. Second, establishment of midsagittal plane of the face three dimensionally, with the concept of "the plane of the best-fit". Third, examination of the degree of deviation and direction of deformity of structure to the reference plane for the purpose of establishing surgical planning. Fourth, simulation of expected postoperative result by various image operation such as mirroring, overlapping.

  • PDF

Medical data visualization using Unity3D game engine (Unity3D 게임 엔진을 이용한 의료 데이터 가시화)

  • Ha, Taejun;Kye, Heewon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2017
  • Due to improvements in the capabilities of commercial game engines, there are increasing instances of applying game engines to scientific visualization applications. This study describes a case of creating a virtual reality application that visualizes medical volume data based on the Unity3D game engine. When using a game engine, there is an advantage that various functions required for an application are basically provided, such as depth sorting of translucent objects or virtual reality hardware support. On the other hand, there is a restriction that the structure of the application program should be modified to suit the characteristics of the game engine. This paper describes a method for visualizing medical volume data using the structure of a game engine. As a result, we were able to create a virtual reality scene that consisted of surface data and medical volume data fragments together. And we confirmed the possibility of game engine as a future medical simulation production tool.

A VR-based Tile Display System for the Distributed Visualization (분산 가시화를 위한 가상현실 타일 디스플레이 시스템의 개발)

  • Cha, Moo-Hyun;Lee, Jae-Kyung;Hwang, Jin-Sang;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.167-177
    • /
    • 2010
  • In recent years, the use of high-resolution tiled display system which does not have restrictions on the size of the screen and implements various layout of tile is increasing in order to evaluate the digital mock-up in physical scale or explore large engineering data set in detail. In this study, we developed multi-channel distributed visualization system which provides a virtual reality-based visual contents using 3D open-source graphics engine. Efficient data structures and exchange methods were proposed as a scene synchronization technology in PC cluster environments. DLP-Cube based tiled visualization system which provides $5{\times}2$ layout of display wall was developed and we validated our approach using this system. In addition, we introduced integrated control program that administrates PC cluster environment in remote and controls the layout of display channels.

Brain Hologram Visualization for Diagnosis of Tumors using Graphic Imaging

  • Nam, Jenie;Kim, Young Jae;Lee, Seung Hyun;Kim, Kwang Gi
    • Journal of Multimedia Information System
    • /
    • v.3 no.3
    • /
    • pp.47-52
    • /
    • 2016
  • This research paper examines the usage of graphic imaging in Holographic Projections to further advance the medical field. It highlights the importance and necessity of this technology as well as avant-garde techniques applied in the process of displaying images in digital holography. This paper also discusses the different types of applications for holograms in society today. Different tools were utilized to transfer a set of a cancer patient's brain tumor data into data used to produce a 3D holographic image. This image was produced through the transfer of data from one program to another. Through the use of semi-automatic segmentation through the seed region method, we were able to create a 3D visualization from Computed Tomography (CT) data.

Develop 3D Prostate Cancer Visualization Tool in Smart Care System (스마트 케어 시스템에서의 3차원 전립선 암 가시화 도구 개발)

  • Ahn, Byung Uk;Shin, Seung Won;Choi, Moon Hyung;Jung, Seung Eun;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.163-169
    • /
    • 2016
  • In Korea, prostate cancer accounted for generating growth rate second the following thyroid cancer, because of western dietary habits. Survival rate of prostate cancer after clinical behavior is changed depend on follow-up management. A telemedicine have been applied to replacement of medical specialist in rural area, and a quick reaction to emergency situation. Our study developed prostate 3-dimensional (3D) visualization program and designed prostate aftercare system architecture, called smart care, using a device that can access the Internet. Region of interest (ROI) in prostate was manually segmented by physicians and visualized to 3D objects and sent to PACS Server as DICOM images. So, medical personnel could confirm patients' data along with 3D images not only PACS system, but also portable device like a smart phone. As a result, we conducted the aftercare service to 98 patients and visualize 3D prostate images. 3D images had advantage to instinctively apprehend where lesion is and make patients to understand state of their disease easily. In the future, should conduct an aftercare service to more patients, and will obtain numerical index through follow-up study to an accurate analysis.

Experimental Research on the Optimal Surveillance Equipment Allocation Using Geo-spatial Information (지형공간 정보를 이용한 감시장비 배치 최적화 실험 연구)

  • Lee, Yong-Woong;Sung, Chang-Sup;Yang, Woo-Suk;Im, Seong-Bin;Eo, Yang-Dam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.72-79
    • /
    • 2006
  • This study was focused on analyzing mathematical model for optimal allocation of surveillance equipment which is operated on the natural geographical condition, such as DMZ fence area. Optimal allocation algorithm was studied for the equipment to develop the whole surveillance and watch model for the two area as testing. Also 3D visualization program was developed to display and analyze the detecting effect. The results show that our suggested model will be available for enhancing security condition on the watching area.