• Title/Summary/Keyword: 3-D velocity model

Search Result 506, Processing Time 0.027 seconds

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF

Performance Analysis of Linear Brake by Using Efficient 2-D Model (유효한 2차원 모델을 이용한 리니어 브레이크 성능 해석)

  • Han, Pil-Wan;Chun, Yon-Do;Lee, Ju;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.601-607
    • /
    • 1998
  • This paper presents the efficient 2-D linear brake analysis model which can compensate the lateral leakage flux by changingng the airgap length and magneto-motive force(MMF). The linkage flux of the 2-D analysis is larger than that of 3-D analysis. This is caused by the assumption in 2-D analysis that geometric and physical values are constant along the perpendicular direction(z) to the analysis region. The equivalent MMF have been calculated from the linkage flux difference between the 2-D and 3-D analyses which are performed at zero velocity. The performances of the linear brake have been analyzed effectively by using the compensated 2-D models without using 3-D FEM.

  • PDF

Velocity Measurement of Stream Water Surface Using Microwave (전자파를 이용한 하천수 표면유속 측정)

  • Lee, Sang-Ho;Lee, Han-Gu;Kim, U-Gu
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.183-191
    • /
    • 1995
  • Applying microwave, a velocity measurement system has been developed in order to measure the velocity of stream water surface. It's main purpose is the measurement for high velocity of flood water. It is under the developing stage of experimental measurement system. The microwave surface velocity meter uses Doppler effects of microwave. It consists of a radio frequency(RF) part and that of signal processing. Thr RF part has the function of microwave oscillation, reception of reflected wave, and determination of Doppler frequency, etc. Signal processing designates amplification, fast Fourier transform, etx. Various measuring experiments were performed at bridges and a spillway of Taechong re-regulation dam with the microwave velocity meter. Verification test was also made through water tank of ship model test at Research Institute of Ships and Ocean Engineering. It shows 4% error inherent in A/D converter and additional several percentage errors from measurement circumstance. The measuring ranges are from 0.5 to 3.5 m/s. The result shows good linear relationship between carriage velocity and measured velocity, thus proves usefulness as a measuring instrument for flood water velocity. The instrument requires overall re-engineering procedure and number of data should be accumulated and analyzed to treat wind effects and random fluctuations of water surface.

  • PDF

A Model Experiment on the Basic Efficiency of Midwater Rope Trawl Net (로프 트롤 그물의 기본성능에 관한 모형실험)

  • Yae, Young-Hee;Lee, Byong-Gee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-213
    • /
    • 1993
  • A model experiment on a midwater rope trawl net which is used in the North Pacific to catch alaska pollack is carried out in the circulating tank to examine the basic efficiency of the net. The prototype is the net used by M/S Hanil(1, 179GT, 2, 700PS), a Korean trawler. The model net was made according to the Tauti's Similarity Law of Fishing Gear in 1/100 scale by considering the condition of the tank. To measure the basic efficiency of the standard model net, the vertical opening and width between some points marked on the net were measured, and the hydrodynamic resistance were determined. Then the constructive conditions of the net were varied as follows and the factors were measured again to compare the efficiency of those nets with that of the standard net(A-1 type) front weight multiplied 1.5 times: A-2 type. buoyancy and depressing force multiplied 1.7 times: A-3 type. front weight multiplied 1.5 times on A-3 type: A-4 type. depressors rigged at ground rope: B type. cod-end stuffed with cashmylon wad: C type. The results obtained can be summarized as follows: 1. The vertical opening at the center of head rope was steeply decreased with the flow velocity increasing and the vertical opening H(m) can be expressed in H=1.2v super(-1.2)(v : flow velocity in m/sec). The width of the net varied a little when the flow velocity was over 0.4m/sec, and the width of net mouth showed about 37% of the distance between the fore tips of net pendant. The shape of net mouth was almost a circle at 0.2m/sec and then steeply flatted elliptically with the flow velocity increasing and the area of mouth S(m super(2)) can be expressed in S=(1.65-2.3v)$\times$10 super(-2). The hydrodynamic resistance of the net increased almost linearly with the flow velocity increasing and the resistance R(kg) can be expressed in R=3.2$\times$d/l$\times$abv. where d/l denotes the mean of d(diameter of netting twine) and l(length of a leg in a mesh) from wing tip to the end of bag-net except cod-end on the side pannel, and a denotes the strectched circumference of the net at the fore end of a meshed part and b the stretched length of the whole net from wing tip to the end of cod-end. 2. In the condition-varied nets, the vertical opening of head rope showed some increase in every type net except the C type, and the increase showed the greatest in the B type by 30~54%, whereas it showed decrease in the C type by 5~10%. Variation of the area of net mouth showed almost the same tendency as the vertical opening and the increase showed the greatest in the B type by 20%, whereas it showed decrease in the C type by 12%. Hydrodynamic resistance showed some increase in every type compared with the standard net, and the rate of increase indicated 5~10% in the A-2, A-3 and A-4 type, 22% in the B type and 3% in the C type.

  • PDF

Droplet Ejection and Experimental Study on the Application of Industrial Inkjet Printhead (산업용 잉크젯 프린트헤드 액적 토출현상의 실험적 해석)

  • Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this paper, a hybrid design tool combining one-dimensional(1D) lumped model and three-dimensional computational fluid dynamics(CFD) approach has been developed in order to evaluate the performance of inkjet print head and droplet control process are studied to reduce the deviations between nozzles which affect the size of the printed line for the industrial application of direct writing on printed circuit boards(PCB). 1D lumped model analysis shows that it is useful tool for evaluating performance of an inkjet head by varying the design parameters. The differences in ejected volume and droplet velocity between analytical and experimental result are within 12%. Time sequence of droplet generation is verified by the comparison between 3D analysis result and photographic images acquired by stroboscopic technique. In addition, by applying DPN process, velocity and volume uniformity between nozzles is dramatically improved that the tolerance achieved by the piezoelectric inkjet printhead across the 64 nozzles is 5 to 8%. A printed line pattern is successfully obtained using the fabricated inkjet print head and droplet calibration system.

  • PDF

The characteristics of upper crust below the southern Korean Peninsula by using 3-D tomography (3차원 토모그래피 방법으로 본 한반도 남부지역의 상부지각 속도 특성)

  • Park, Jung-Ho;Kang, Ik-Bum
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.64-69
    • /
    • 2006
  • At starting point, 1D velocity models were inverted by using 430 events with P-wave 5147, S-wave 3729 from KIGAM, KMA, KEPRI, and KINS's seismic networks. A minimum 1D model shows that P-wave velocities are around $6.0{\pm}0.5\;km/s$ slowly increasing with depth between surface and 15 km. The velocities are about $6.4{\pm}0.2\;km/s$ below 15km to 35km. The earthquake data number for 3D tomography was 630 adding to previous 430 events with limitation of more than 6 station detection and relocation stability of location. The checkerboard test shows that only upper curst part from surface to 17 km have reliable resolution. The results of upper crust part present that the boundary of Gyeong-sang basin and Youngnam massif is mach well velocity variation pattern. The western part of the basin is shown as lower velocity and south-eastern part as higher. This is because that sedimentary rocks are widely located around western part of the basin and volcanic origin rocks are distributed around south-eastern part.

  • PDF

NUMERICAL ANALYSIS TO DESIGN HIGH TEMPERATURE HEAT EXCHANGER OF BETA TYPE STIRLING ENGINE IN 3-D COMBUSTION FIELD (3차원 연소장에서의 베타 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구)

  • Kang, S.H.;Kim, H.J.;Chung, D.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Numerical study is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver, FLUENT. The Fin-tube type of heat exchanger is designed as a reference model by considering the type of engine which is ${\beta}$-configuration. To find the optimal design of heat exchanger in heat transfer capacity numerical calculation is conducted by changing the shape, the number, and material of reference model in three-dimensional combustion field. Adjusted one-way constant velocity of working fluid that is helium is considered as the representative velocity of oscillating flow. The optimal design of heat exchanger considering the heat transfer capability is suggested by using the calculation results.

Numerical study of turbulent wake flow behind a three-dimensional steep hill

  • Ishihara, Takeshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.317-328
    • /
    • 2002
  • A numerical investigation on the turbulent flows over a three-dimensional steep hill is presented. The numerical model developed for the present work is based on the finite volume method and the SIMPLE algorithm with a non-staggered grid system. Standard $k-{\varepsilon}$ model and Shih's non-linear model are tested for the validation of the prediction accuracy in the 3D separated flow. Comparisons of the mean velocity and turbulence profiles between the numerical predictions and the measurements show good agreement. The Shih's non-linear model is found to predict mean flow and turbulence better than the Standard $k-{\varepsilon}$. Flow patterns have also been examined to explain the difference in the cavity zone between 2D and 3D hills.

Modeling of Velocity Term in 3D Moving Conductor Problems by the Indirect BIEM (간접경계적분법에 의한 3차원 운동도체 문제에서의 속도항 모델링)

  • Kim, Dong-Hun;Park, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.113-115
    • /
    • 1998
  • This paper presents the indirect boundary integral equation method(BIEM) to analyze 3D moving conductor problem. Instead of an artificial upwind algothm, the proposed method uses a fundamental Green's function which is a particular solution of diffusion equation. Therefore, this method yields a stable and accurate solution regardless of the Peclet number. The indirect BIEM is compared with 3D upwind FEM for a numerical model which has analytic solutions.

  • PDF

쌍끌이 중층트롤어법의 연구 ( 2 ) - 모형어구의 깊이에 관하여 - ( A Study on the Pair Midwater Trawling ( 2 ) - Working Depth of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • Working depth of the model net was determined by using of the same experimental tank and the same model net that used in the forwarded report in a series studies. The depth of the net which indicates the depth of the head rope from the water surface, was determined by the photographs taken in front of the net mouth with the combination of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Working depth of model nets A and B was varied in the range of 0.09~1.66$m$,and 0.04~1.34$m$(which can be converted into 2.7~40.2$m$and 1.2~49.8$m$in the full-scale net) respectively, and the depth of model net A was slightly deeper than the depth of the model net B. 2. Working depth ($D$,which is appendixed m for the model net, f for the full-scale net, A and B for the types of the model nets) can be expressed as the function of towing velocity$V_t$, as in the model net($V_t$=$m$/$sec$) $D_{mA}$=(-1.99+0.65$L_w$) $e^{-1.72V_t}$ $D_{mA]$=(-1.91+1.04 $L_w$) $e^{2.88V_t}$ in the full-scale net($V_t$=$k$'$t$ $D_{fA}$=(-29.32+0.65$L_w$)$e^{0.40 V_t}$ $D_{fB}$=(-57.60+1.04$L_w$)$e^{-0.67 V_t}$ 3. Working depth 9$D$ appendixes are as same as the former) can be expressed as the function of warp length$L_w$) in the model net, and can be converted into full-scale net as in the model net ($V_t$=$m$/$sec$) $D_{mA}$=-0.99 $e^{-1.42V_t}$+0.67$e^{-1359V_t}$$L_w$ $D_{mB}$=-.258$e^{-3.77V_t}$+1.16$e^{-3.15V_t$ $L^w$, in the full-scale net($V_t$=k't) $D_{fA}$=-29.28$e^{-0.32V_t}$+0.67$e^{-0.37V_t$$L_w$ $D_{fB}$=-69.10$e^{-0.81V_t}$+1.16$e^{-0.72V_t}$$L_w$. 4. Working depth was gradually shallowed according to the increase of the distance between paired boats.

  • PDF