• Title/Summary/Keyword: 3-D velocity model

Search Result 509, Processing Time 0.025 seconds

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

Seismic Response Analyses of the Structure-Soil System for the Evaluation of the Limits of the Site Coefficients (지반계수의 한계값 평가를 위한 구조물-지반체계에 대한 지진응답해석)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.67-77
    • /
    • 2007
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they take into account only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of the site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on the linear or nonlinear soil layers taking Into account the effects of the structure-soil interaction. Soil characteristics of site classes of A, B and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of the soil layer, Seismic analyses were performed with 12 weak or moderate earthquake records scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock located at 30m deep under the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of $F_{a}\;and\;F_{v}$ at the short period range and the period of 1 second are suggested including the effects of the structure-soil interaction, and new site coefficients for the KBC code are also suggested.

A Case Study on the Application of Vibration Level Units in the Construction Phase (시공단계의 진동레벨 단위적용에 관한 사례 연구)

  • Choi, Hyung-Bin;Kim, Dong-Yeon
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 2012
  • Ground vibration induced by a bench blasting in the construction site should cause the damage to the structure and indirect damage to a human body, and the vibration level is most practical descriptor for regulating the damage to human body and peak particle velocity is the descriptor for direct damage assesment of the structure. Meantime, the vibration level has not been considered for the blasting design but this study is the case that apply not only peak particle velocity but also vibration level on the blasting design. Also, we strongly believe that this study will be helpful for the management in the blasting site which some civil appeal is concerned. Total 232 measurements of both ppv and vibration level was used to estimate the scale distance. When the regulating threshold was ppv 0.3 cm/s and vibration level 75 decibel, the charge per delay to be estimated with vibration level could be recommended by 1.2~1.4 times than it of ppv. So, it is proven that considering vibration level on the blasting design is reasonable for not only prevention of the civil appeals but also effective blasting. Again, the blasting design which follows the law, "Noise and Vibration Control Act" can actually serve good condition to carry much more economical and effective blasting. The instruments used for this study are the SV-1 model, as first instrument in korea which can measure vibration velocity and vibration level at the same time.

3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션)

  • Choi, Goon-Ho;Jun, Jae-Hyoung;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-201
    • /
    • 2020
  • It has been widely known that the effect of diffracted waves at the tip of composite breakwater with finite length causes the change of standing wave height along the length of breakwater, the spatial change of wave pressure on caisson, and the occurrence of meandering damage on the different sliding distance in sequence. It is hard to deal with the spatial change of wave force on trunk of breakwater through the two-dimensional experiment and/or numerical analysis. In this study, two and three-dimensional numerical techniques with olaFlow model are used to approach the spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, it is thoroughly studied the mean wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis. In conclusion, it is confirmed that the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure checked by not two-dimensional analysis, but three-dimensional analysis through the change of wave pressure applied to the caisson along the length of breakwater.

S-wave Velocity Derivation Near the BSR Depth of the Gas-hydrate Prospect Area Using Marine Multi-component Seismic Data (해양 다성분 탄성파 자료를 이용한 가스하이드레이트 유망지역의 BSR 상하부 S파 속도 도출)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.229-238
    • /
    • 2011
  • S-wave, which provides lithology and pore fluid information, plays a key role in estimating gas-hydrate saturation. In general, P- and S-wave velocities increase in the presence of gas-hydrate and the P-wave velocity decreases in the presence of free gas under the gas-hydrate layer. Whereas there are very small changes, even slightly increases, in the S-wave velocity in the free gas layer because S-wave is not affected by the pore fluid when propagating in the free gas layer. To verify those velocity properties of the BSR (bottom-simulating reflector) depth in the gas-hydrate prospect area in the Ulleung Basin, P- and S-wave velocity profiles were derived from multi-component ocean-bottom seismic data which were acquired by Korea Institute of Geoscience and Mineral Resources (KIGAM) in May 2009. OBS (ocean-bottom seismometer) hydrophone component data were modeled and inverted first through the traveltime inversion method to derive P-wave velocity and depth model of survey area. 2-D multichannel stacked data were incorporated as an initial model. Two horizontal geophone component data, then, were polarization filtered and rotated to make radial component section. Traveltimes of main S-wave events were picked and used for forward modeling incorporating Poisson's ratio. This modeling provides S-wave profiles and Poisson's ratio profiles at every OBS site. The results shows that P-wave velocities in most OBS sites decrease beneath the BSR, whereas S-wave velocities slightly increase. Consequently, Poisson's ratio decreased strongly beneath the BSR indicating the presence of a free gas layer under the BSR.

A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle (산업용 단선 궤도 차량의 주행 동특성에 관한 연구)

  • Lee Soo-Ho;Jung Il-Ho;Lee Hyung;Park Joong-Kyung;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.

Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis (Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가)

  • Lee, Junga;Park, Da Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • The ecotoxicity tests for metal plating wastewater were conducted using Daphnia magna (D. magna) and Euglena agilis (E. agilis). Evaluation for sources of toxicity was performed by 1) Correlation analysis between the concentration of individual metals in the metal plating wastewater and the toxic effects on D. magna, 2) Toxicant identification evaluation methods including graduated pH method, EDTA procedure and sodium thiosulfate procedure, 3) Comparison of toxic effect value ($EC_{50}$ or $LC_{50}$) of individual metal on D. magna and it's concentration in the metal plating wastewater. To evaluate the possibility of E. agilis, a Korean domestic organism, as a test model organism for metal plating waste water, E. agilis toxicity test was also assessed using on-line euglena ecotoxicity system (E-Tox system). Based on toxicant characterization test using D. magna, it was expected that SS, oxidants and heavy metals are responsible for toxicity of metal plating waste water. Especially Cu, Hg, and Ag were the major cationic metals that caused toxicity. E. agilis is less sensitive than D. magna based on the $EC_{50}$ value however it shows prompt response to toxic test substances. E. agilis shows even a significant effect on the cell swimming velocity within 2 min to toxic metal plating wastewater. Our study demonstrates that E. agilis test can be a putative ecotoxicity test for assessing the quality of metal plating waste water.

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

Evaluation of Air Flow Characteristics in accordance with Types of Waveguide-Below-Cutoff (WBC) Arrays and Their Shielding Effectiveness of Electromagnetic Pulse (EMP) (EMP 차폐를 위한 도파관 형상과 SE에 따른 유동 특성 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin;Yook, Jong-Gwan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, we evaluated the flow characteristics of various types of waveguide-below-cutoff (WBC) arrays and their shielding effectiveness (SE) of electromagnetic pulses (EMP) based on computational fluid dynamics (CFD). Three types of waveguides were selected for analysis: (1) grid type, (2) honeycomb type, and (3) multi-layer types (2-ply, 4-ply, 6-ply, and 8-ply). To analyze the air flow characteristics, the flow velocities in the longitudinal center of the WBC and the differential pressures between the WBC array inlet and outlet were evaluated. Consequently, we derive the following conclusions: (1) despite an increase in the inlet velocity, the pressure drop of the 6-ply multi-layer type did not significantly increase as compared to that of other types of waveguides (waveguide thickness of 0.1 mm, SE of 100 dB); (2) the grid and honeycomb type had the fastest flow rate of 17.5 m/s, which is approximately 2.5 m/s faster than that at the inlet (waveguide thickness of 1 mm, module size of 30 mm); and (3) the average pressure drop of the grid type waveguide is the lowest in the overall model, whereas that of the 8-ply is the highest (waveguide thickness of 1 mm, module size of 30 mm, and SE of 80, 100 dB).