• Title/Summary/Keyword: 3-D velocity model

Search Result 509, Processing Time 0.024 seconds

Three-Dimensional Flow Visualization for the Steady and Pulsatile Flows in a Branching Model using the High-Resolution PIV System

  • Suh, Sang-Ho;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • The objective of the present study is to visualize the steady and pulsatile flow fields in a branching model by using a high-resolution PIV system. A bifurcated flow system was built for the experiments in the steady and pulsatile flows. Harvard pulsatile pump was used to generate the pulsatile velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow fields. CCD cameras($1K{\times}1K$(high resolution camera) and $640{\times}480$(low resolution camera)) captured two consecutive particle images at once for the image processing of several cross sections on the flow system. The range validation method and the area interpolation method were used to obtain the final velocity vectors with high accuracy. The results of the image processing clearly showed the recirculation zones and the formation of the paired secondary flows from the distal to the apex of the branch flow in the bifurcated model. The results also indicated that the particle velocities at the inner wall moved faster than the velocities at the outer wall due to the inertial force effects and the helical motions generated in the branch flows as the flow proceeded toward the outer wall. Even though the PIV images from the high resolution camera were closer to the simulation results than the images from the low resolution camera at some locations, both results of the PIV experiments from the two cameras generally agreed quite well with the results from the computer simulations. Therefore, instead of using the expensive stereoscopic PIV or 3D PIV system, the three-dimensional flow fields in a bifurcated model could be easily and exactly investigated by this study.

  • PDF

Correct Closure of the Left Atrial Appendage Reduces Stagnant Blood Flow and the Risk of Thrombus Formation: A Proof-of-Concept Experimental Study Using 4D Flow Magnetic Resonance Imaging

  • Min Jae Cha;Don-Gwan An;Minsoo Kang;Hyue Mee Kim;Sang-Wook Kim;Iksung Cho;Joonhwa Hong;Hyewon Choi;Jee-Hyun Cho;Seung Yong Shin;Simon Song
    • Korean Journal of Radiology
    • /
    • v.24 no.7
    • /
    • pp.647-659
    • /
    • 2023
  • Objective: The study was conducted to investigate the effect of correct occlusion of the left atrial appendage (LAA) on intracardiac blood flow and thrombus formation in patients with atrial fibrillation (AF) using four-dimensional (4D) flow magnetic resonance imaging (MRI) and three-dimensional (3D)-printed phantoms. Materials and Methods: Three life-sized 3D-printed left atrium (LA) phantoms, including a pre-occlusion (i.e., before the occlusion procedure) model and correctly and incorrectly occluded post-procedural models, were constructed based on cardiac computed tomography images from an 86-year-old male with long-standing persistent AF. A custom-made closed-loop flow circuit was set up, and pulsatile simulated pulmonary venous flow was delivered by a pump. 4D flow MRI was performed using a 3T scanner, and the images were analyzed using MATLAB-based software (R2020b; Mathworks). Flow metrics associated with blood stasis and thrombogenicity, such as the volume of stasis defined by the velocity threshold ($\left|\vec{V}\right|$ < 3 cm/s), surface-and-time-averaged wall shear stress (WSS), and endothelial cell activation potential (ECAP), were analyzed and compared among the three LA phantom models. Results: Different spatial distributions, orientations, and magnitudes of LA flow were directly visualized within the three LA phantoms using 4D flow MRI. The time-averaged volume and its ratio to the corresponding entire volume of LA flow stasis were consistently reduced in the correctly occluded model (70.82 mL and 39.0%, respectively), followed by the incorrectly occluded (73.17 mL and 39.0%, respectively) and pre-occlusion (79.11 mL and 39.7%, respectively) models. The surfaceand-time-averaged WSS and ECAP were also lowest in the correctly occluded model (0.048 Pa and 4.004 Pa-1, respectively), followed by the incorrectly occluded (0.059 Pa and 4.792 Pa-1, respectively) and pre-occlusion (0.072 Pa and 5.861 Pa-1, respectively) models. Conclusion: These findings suggest that a correctly occluded LAA leads to the greatest reduction in LA flow stasis and thrombogenicity, presenting a tentative procedural goal to maximize clinical benefits in patients with AF.

Development of Hydraulic Jet Dredge ( 1 ) - Water tank Experiment for the Excavating Performance of Water-Jet Nozzle on the Sand - (분사식 행망의 개발에 관한 연구 ( I ) - 분사노즐의 사면 굴삭성능에 관한 수조실험 -)

  • Jo, Bong-Gon;Go, Gwan-Seo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.255-265
    • /
    • 1991
  • In order to find the excavating performance of water-jet nozzle on the sand, the authors were carried out the excavating experiment with the model nozzles which were semi circular sectioned nozzles and rectangular nozzle in water tank. The results were as follows. 1) Excavating maximum depth and width on the sand by the water jet were straightly increased in proportion to the velocity of water jet and the section area of nozzle, and that, by the nozzle distance from the excavating point on the sand, the depth was decreased, while the width was increased straightly. 2) Rectangular nozzle which the thick of hole is 1mm, was a little bit better than the circular nozzle of the same sectioned area on the excavating performance. 3) Empirical equations between the velocity of water jet, the distance of nozzle, and the maximum excavating depth and width by angle of nozzle were expressed as linear, they were as follows on the 45$^{\circ}$ angle of the rectangular nozzle(1$\times$12mm); D=0.0093V sub(0)-0.23H+5.7. W=0.0147V sub(0)+1.06H+10.2. where, D is the maximum excavating depth(cm), W is the maximum excavation width(cm), V sub(0) is the velocity of water jet(cm/s); 926$\leq$V sub(0)$\leq$1504, H is the distance(cm) from nozzle tip to water-jetted point on the surface of sand.

  • PDF

Enhancing Location Estimation and Reducing Computation using Adaptive Zone Based K-NNSS Algorithm

  • Song, Sung-Hak;Lee, Chang-Hoon;Park, Ju-Hyun;Koo, Kyo-Jun;Kim, Jong-Kook;Park, Jong-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.119-133
    • /
    • 2009
  • The purpose of this research is to accurately estimate the location of a device using the received signal strength indicator (RSSI) of IEEE 802.11 WLAN for location tracking in indoor environments. For the location estimation method, we adopted the calibration model. By applying the Adaptive Zone Based K-NNSS (AZ-NNSS) algorithm, which considers the velocity of devices, this paper presents a 9% improvement of accuracy compared to the existing K-NNSS-based research, with 37% of the K-NNSS computation load. The accuracy is further enhanced by using a Kalman filter; the improvement was about 24%. This research also shows the level of accuracy that can be achieved by replacing a subset of the calibration data with values computed by a numerical equation, and suggests a reasonable number of calibration points. In addition, we use both the mean error distance (MED) and hit ratio to evaluate the accuracy of location estimation, while avoiding a biased comparison.

  • PDF

Investigation into Low Velocity Impact Characteristics of the Stainless Steel Sheet with Thickness of 0.7 mm on the Stretching Condition using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 스트레칭 조건에서의 두께 0.7mm 스테인레스 강판의 저속 충격 특성 분석)

  • Ahn, Dong-Gyu;Moon, Kyung-Je;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.80-87
    • /
    • 2008
  • This paper investigated into the impact characteristics of the stainless sheet with thickness of 0.7 mm on the stretching boundary condition through three-dimensional finite element analysis. High speed tensile tests were carried out to obtain strain-stress relationships with the effects of the strain rate. The FE analysis was performed by the ABAQUS explicit code. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor were introduced. Through the comparison of the results of the FE analyses and those of the impact tests, a proper FE model was obtained. The results of the FE analyses showed that the absorption rate of energy maintains almost 82.5-83.5% irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, variations of stress, strain, dissipation energy, strain energy density, and local deformation characteristics in the stainless sheet during the collision and the rebound of the impact head were quantitatively examined. In addition, it was shown that the fracture of the specimen occurs when the plastic strain is 0.42 and the maximum value of the plastic dissipation energy of the specimen is nearly 1.83 J.

The Experimental Study on the Natural Ventilation Performance of Solar Chimney by the variation of Insulation Thickness and Height (단열재의 두께 및 연돌높이에 따른 태양열 굴뚝의 자연환기 성능에 관한 실험적 연구)

  • Cho, S.W.;Kim, D.W.;Im, Y.B.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.39-46
    • /
    • 2002
  • The results of experiment on the performance of natural ventilation by insulation thickness and height system of solar chimney are described. The 3-inside wall was made of concrete and 1-wall was made of glass. The two kinds of model experiment were performed. One was the varition of the 60cm, 90cm and 120cm of solar chimney, the other was the variation of the insulation thickness 10mm and 50mm and without insulation of outside wall of solar cimney. As the temperature difference between bottom and top expressed $1.7\sim2.9^{\circ}C$, air velocity measured $0.5\sim0.8m/s$ and ventilation rate was $194.4m^3/h$ in the case of the 120cm height of solar chimney, the respect of natural ventilation performance was superior to others cases in the first model experiment. Though the case of 120cm height of solar chimney was attached 50mm insulation the ventilation rate was not so much as the case of solar chimney was attached 10mm insulation. the temperature difference between bottom and top was the largest in the other cases. From this research, the natural ventilation performance of solar chimney was affected by not only height and insulation thickness of solar chimney but also wind velocity and directon.

Performance Evaluation of the Modified Interacting Multiple Model Filter Using 3-D Maneuvering Target (3차원 기동표적을 사용한 수정된 상호작용 다중모델필터의 성능 분석)

  • Park, Sung-Lin;Kim, Ki-Cheol;Kim, Yong-shik;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.5
    • /
    • pp.445-453
    • /
    • 2001
  • The multiple targets tracking problem has been one of the main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimen-sion filter, input estimation filter, interacting multiple model(IMM) filter, dederated variable dimension filter with input estimation, etc., have proposed to address the tracking and sensor fusion issues. In this pa- per, two existing tracking algorithm, i.e, the IMM filter and the variable dimension filter with input estima-tion(VDIE), are combined for the purpose of improving the tracking performance for maneuvering targets. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns, i.e., waver, pop-up, and high-diver motions, are defined and are applied to the modified IMM filter as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMM filter than the standard IMM filter are demonstrated though computer simulations.

  • PDF

Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming

  • Khayyer, Abbas;Gotoh, Hitoshi;Falahaty, Hosein;Shimizu, Yuma;Nishijima, Yusuke
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.299-318
    • /
    • 2017
  • The paper aims at illustrating several key issues and ongoing efforts for development of a reliable fully-Lagrangian particle-based solver for simulation of hydroelastic slamming. Fluid model is founded on the solution of Navier-Stokes along with continuity equations via an enhanced version of a projection-based particle method, namely, Moving Particle Semi-implicit (MPS) method. The fluid model is carefully coupled with a structure model on the basis of conservation of linear and angular momenta for an elastic solid. The developed coupled FSI (Fluid-Structure Interaction) solver is applied to simulations of high velocity impact of an elastic aluminum wedge and hydroelastic slammings of marine panels. Validations are made both qualitatively and quantitatively in terms of reproduced pressure as well as structure deformation. Several remaining challenges as well as important key issues are highlighted. At last, a recently developed multi-scale MPS method is incorporated in the developed FSI solver towards enhancement of its adaptivity.

Effects of spatial variability of earthquake ground motion in cable-stayed bridges

  • Ferreira, Miguel P.;Negrao, Joao H.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.233-247
    • /
    • 2006
  • Most codes of practice state that for large in-plane structures it is necessary to account for the spatial variability of earthquake ground motion. There are essentially three effects that contribute for this variation: (i) wave passage effect, due to finite propagation velocity; (ii) incoherence effect, due to differences in superposition of waves; and (iii) the local site amplification due to spatial variation in geological conditions. This paper discusses the procedures to be undertaken in the time domain analysis of a cable-stayed bridge under spatial variability of earthquake ground motion. The artificial synthesis of correlated displacements series that simulate the earthquake load is discussed first. Next, it is described the 3D model of the International Guadiana Bridge used for running tests with seismic analysis. A comparison of the effects produced by seismic waves with different apparent propagation velocities and different geological conditions is undertaken. The results in this study show that the differences between the analysis with and without spatial variability of earthquake ground motion can be important for some displacements and internal forces, especially those influenced by symmetric modes.

Numerical Analysis of the 3-D Flow Field in a Globe Valve Trim under High Pressure Drop (고차압 제어용 글로브 밸브 트림 내부의 3차원 유동장 해석)

  • Yoon, Joon-Yong;Byun, Sung-Joon;Yang, Jae-Mo;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.14-20
    • /
    • 2001
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve trim is carried out to confirm the possibility whether this simulation tool can be used as a design tool or not. The simulation of the incompressible flow in a glove valve is performed by using the commercial code. CFD-ACEA utilizes the finite volume approach as a discretization scheme, and the pressure-velocity coupling is made from SIMPLEC algorithm in it. Four flow cases of the control valve are investigated, and the valve flow coefficient for each case is compared with the experimental data. Simulation results show a good agreement with the experiments, and it is observed that the cavitation model improves the simulation results.

  • PDF