• Title/Summary/Keyword: 3-D simulation

Search Result 5,225, Processing Time 0.038 seconds

Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models (TANK 모형과 SWAT 모형을 이용한 한강유역의 자연유출량 산정 비교)

  • Kim, Chul-Gyum;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.301-316
    • /
    • 2012
  • Two models, TANK and SWAT (Soil and Water Assessment Tool) were compared for simulating natural flows in the Paldang Dam upstream areas of the Han River basin in order to understand the limitations of TANK and to review the applicability and capability of SWAT. For comparison, simulation results from the previous research work were used. In the results for the calibrated watersheds (Chungju Dam and Soyanggang Dam), two models provided promising results for forecasting of daily flows with the Nash-Sutcliffe model efficiency of around 0.8. TANK simulated observations during some peak flood seasons better than SWAT, while it showed poor results during dry seasons, especially its simulations did not fall down under a certain value. It can be explained that TANK was calibrated for relatively larger flows than smaller ones. SWAT results showed a relatively good agreement with observed flows except some flood flows, and simulated inflows at the Paldang Dam considering discharges from upper dams coincided with observations with the model efficiency of around 0.9. This accounts for SWAT applicability with higher accuracy in predicting natural flows without dam operation or artificial water uses, and in assessing flow variations before and after dam development. Also, two model results were compared for other watersheds such as Pyeongchang-A, Dalcheon-B, Seomgang-B, Inbuk-A, Hangang-D, and Hongcheon-A to which calibrated TANK parameters were applied. The results were similar to the case of calibrated watersheds, that TANK simulated poor smaller flows except some flood flows and had same problem of keeping on over a certain value in dry seasons. This indicates that TANK application may have fatal uncertainties in estimating low flows used as an important index in water resources planning and management. Therefore, in order to reflect actually complex and complicated physical characteristics of Korean watersheds, and to manage efficiently water resources according to the land use and water use changes with urbanization or climate change in the future, it is necessary to utilize a physically based watershed model like SWAT rather than an existing conceptual lumped model like TANK.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

Total Polyphenol Contents and Antioxidant Activities of Methanol Extracts from Vegetables produced in Ullung Island (울릉도산 산채류 추출물의 총 폴리페놀 함량 및 항산화 활성)

  • Lee, Syng-Ook;Lee, Hyo-Jung;Yu, Mi-Hee;Im, Hyo-Gwon;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.233-240
    • /
    • 2005
  • To discover new functional materials using edible plants, antioxidant activities of methanol extracts from various parts of seven wild vegetables were investigated in vitro. Total polyphenol contents, determined by Folin-Denis method, varied from 16.74 to $130.22{\mu}g/mg$. Radical-scavenging activities of methanol extracts were examined using ${\alpha},\;{\alpha}-diphenyl-{\beta}-pirrylhydrazyl$ (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assay. Inhibition effects on peroxidation of linoleic acid determined by ferric thiocyanate (FTC) method and on oxidative degradation of 2-deoxy-D-ribose in Fenton-type reaction system were dose-dependent. Athyrium acutipinulum Kodama (leaf and rood), Achyranthes japonica (Miq.) Nakai (seed), and Solidago virga-aurea var. gigantea Nakai (root) showed relatively high antioxidant activities in various systems.

Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts

  • Huang, Shuling;Pei, Qitao;Ding, Xiuli;Zhang, Yuting;Liu, Dengxue;He, Jun;Bian, Kang
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.151-163
    • /
    • 2020
  • Grouting method is an effective way of reinforcing cracked rock masses and plugging water gushing. Current grouting diffusion models are generally developed for horizontal cracks, which is contradictory to the fact that the crack generally occurs in rock masses with irregular spatial distribution characteristics in real underground environments. To solve this problem, this study selected a cement-sodium silicate slurry (C-S slurry) generally used in engineering as a fast-curing grouting material and regarded the C-S slurry as a Bingham fluid with time-varying viscosity for analysis. Based on the theory of fluid mechanics, and by simultaneously considering the deadweight of slurry and characteristics of non-uniform spatial distribution of viscosity of fast-curing grouts, a theoretical model of slurry diffusion in an oblique crack in rock masses at constant grouting rate was established. Moreover, the viscosity and pressure distribution equations in the slurry diffusion zone were deduced, thus quantifying the relationship between grouting pressure, grouting time, and slurry diffusion distance. On this basis, by using a 3-d finite element program in multi-field coupled software Comsol, the numerical simulation results were compared with theoretical calculation values, further verifying the effectiveness of the theoretical model. In addition, through the analysis of two engineering case studies, the theoretical calculations and measured slurry diffusion radius were compared, to evaluate the application effects of the model in engineering practice. Finally, by using the established theoretical model, the influence of cracking in rock masses on the diffusion characteristics of slurry was analysed. The results demonstrate that the inclination angle of the crack in rock masses and azimuth angle of slurry diffusion affect slurry diffusion characteristics. More attention should be paid to the actual grouting process. The results can provide references for determining grouting parameters of fast-curing grouts in engineering practice.

Predicting Lift of Rotor Blade for Agricultural Unmanned Helicopter using CFD Simulation (CFD 시뮬레이션을 이용한 농용 회전익기의 로터블레이드 양력성능 예측)

  • Koo, Young Mo;Won, Yong Sik;Hong, Jong Geun;Ali, H.B.;Sohn, Chang Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.59-59
    • /
    • 2017
  • 무인 헬리콥터의 양력을 개선하기 위한 익형 설계 단계로서 두꺼운 익형(V1505A)과 얇고 처진 익형(V2008B)의 기본 두 익형의 특성을 예측하는데 있어 회전하는 블레이드의 현실적 조건을 반영한 3D 모델을 마련하고 성능을 예측하였다. Fluent를 이용한 400 mm 선형모델의 시뮬레이션에서는 V1505A 익형은 높은 받음각에서 안정적인 특성을 보인 반면 V2008B는 비교적 높은 동력효율 특성을 보였으나, 높은 받음각에서는 실속 이후 양력이 급락하는 특성을 나타낸다. 형성된 노드 수는 약 870,000개로 하였다. 시위길이 135 mm인 익형 V2008B의 형상은 ANSYS (Fluent v16.2)를 이용해 반경(길이) 1,502 (1,380) mm 의 로터 블레이드를 구성하였다. 충분하지 않은 유동장이 익형 표면에서의 유동의 영향에 영향을 주지 않도록 직경 20 m의 원방경계(far field)를 형성하였다. 사용된 매쉬의 형태는 정사면체 형태로 로터 표면으로부터의 첫 번째 두께 높이는 0.001 m이고 10개의 층으로 형성하였다. 정지 비행하는 헬리콥터의 상태를 가정하여 회전좌표계를 이용하여 정상상태의 유동을 해석하고 사용된 난류모델은 넓은 영역에서의 유동을 고려하여 Realizable $k-{\varepsilon}$ 모델을 사용하였다. 내측그립 받음각 $6{\sim}22^{\circ}$에 대하여 현실적인 회전속도를 연동하여 600~1000 rpm을 적용하였다. 반복수(iteration)는 2000으로 하여 잔차값(residual)이 충분히 수렴하도록 하였다. 전체적으로 실제 헬리콥터가 발휘하는 양력보다는 낮은 수치로 예측되었으며 모델 및 해석 조건에 대한 검토가 필요해 보인다. 양력 값은 받음각 $10^{\circ}$에서 자중(약 68 kgf)을 극복하였고 받음각 $12^{\circ}$에 유상하중 20 kgf을 발휘하며 888 N의 양력을 보였다, 이어 받음각 $22^{\circ}$에서 실속 현상이 발생하였다. 받음각이 증가함에 따라 항력 역시 증가하였으며 받음각 $12^{\circ}$에서 121 N이었고 실속에 이르며 항력은 갑자기 증가할 것으로 예측된다. 본 연구는 변이 익형 개발의 선행 단계로 기본 익형에 대한 공력특성을 CFD 시뮬레이션을 통하여 예측하였다. 예측 값은 현실적 실험방법을 통하여 검증이 되어야 하며 이후 변이익형에 대한 예측과 설계가 가능하다.

  • PDF

A new Clustering Algorithm for the Scanned Infrared Image of the Rosette Seeker (로젯 탐색기의 적외선 주사 영상을 위한 새로운 클러스터링 알고리즘)

  • Jahng, Surng-Gabb;Hong, Hyun-Ki;Doo, Kyung-Su;Oh, Jeong-Su;Choi, Jong-Soo;Seo, Dong-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.1-14
    • /
    • 2000
  • The rosette-scan seeker, mounted on the infrared guided missile, is a device that tracks the target It can acquire the 2D image of the target by scanning a space about target in rosette pattern with a single detector Since the detected image is changed according to the position of the object in the field of view and the number of the object is not fixed, the unsupervised methods are employed in clustering it The conventional ISODATA method clusters the objects by using the distance between the seed points and pixels So, the clustering result varies in accordance with the shape of the object or the values of the merging and splitting parameters In this paper, we propose an Array Linkage Clustering Algorithm (ALCA) as a new clustering algorithm improving the conventional method The ALCA has no need for the initial seed points and the merging and splitting parameters since it clusters the object using the connectivity of the array number of the memory stored the pixel Therefore, the ALCA can cluster the object regardless of its shape With the clustering results using the conventional method and the proposed one, we confirm that our method is better than the conventional one in terms of the clustering performance We simulate the rosette scanning infrared seeker (RSIS) using the proposed ALCA as an infrared counter countermeasure The simulation results show that the RSIS using our method is better than the conventional one in terms of the tracking performance.

  • PDF

Computation of Aeolian Tones from Twin-Cylinders Using Immersed Surface Dipole Sources

  • Cheong, Cheol-Ung;Ryu, Je-Wook;Lee, Soo-Gab
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2292-2314
    • /
    • 2006
  • Efficient numerical method is developed for the prediction of aerodynamic noise generation and propagation in low Mach number flows such as aeolian tone noise. The proposed numerical method is based on acoustic/viscous splitting techniques of which acoustic solvers use simplified linearised Euler equations, full linearised Euler equations and nonlinear perturbation equations as acoustic governing equations. All of acoustic equations are forced with immersed surface dipole model which is developed for the efficient computation of aerodynamic noise generation and propagation in low Mach number flows in which dipole source, originating from unsteady pressure fluctuation on a solid surface, is known to be more efficient than quadrupole sources. Multi-scale overset grid technique is also utilized to resolve the complex geometries. Initially, aeolian tone from single cylinder is considered to examine the effects that the immersed surface dipole models combined with the different acoustic governing equations have on the overall accuracy of the method. Then, the current numerical method is applied to the simulation of the aeolian tones from twin cylinders aligned perpendicularly to the mean flow and separated 3 diameters between their centers. In this configuration, symmetric vortices are shed from twin cylinders, which leads to the anti-phase of the lift dipoles and the in-phase of the drag dipoles. Due to these phase differences, the directivity of the fluctuating pressure from the lift dipoles shows the comparable magnitude with that from the drag dipoles at 10 diameters apart from the origin. However, the directivity at 100 diameters shows that the lift-dipole originated noise has larger magnitude than, but still comparable to, that of the drag-dipole one. Comparison of the numerical results with and without mean flow effects on the acoustic wave emphasizes the effects of the sheared background flows around the cylinders on the propagating acoustic waves, which is not generally considered by the classic acoustic analogy methods. Through the comparison of the results using the immersed surface dipole models with those using point sources, it is demonstrated that the current methods can allow for the complex interactions between the acoustic wave and the solid wall and the effects of the mean flow on the acoustic waves.

The Effects of Mixer Geometry on Hydraulic Turbulence : Computational Modeling (3-D 전산유체를 이용한 급속혼화조 형상에 따른 난류 유동장 연구)

  • Park, No-Suk;Kim, Sung-Hoon;Park, Heekyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1173-1182
    • /
    • 2000
  • The rapid mixing process has been considered as an important step in water treatment. Since the coagulant dispersion into raw water by rapid mixer can influence on the flocculation and filtration efficiency, many researchers have developed various devices and mixing methodologies. Until now, they focused attention on only coagulant dose, pH. rotating velocity and G value but overlooked the real turbulent flow and mixer geometry in rapid mixer. Therefore this paper questions the significance of turbulent flows in rapid mixer and focuses on the analysis of turbulent fluid in various mixer geometry with CFD(Computational Fluid Dynamics). The results of the jar-tests using various geometries indicate that the turbidity removal rate in a circular jar without baffle is higher than that of a circular with baffle. And the turbidity removal rate in Hudson jar is also founded to be higher than in the circular jar with baffle. The CFD simulation of velocity fields in jar demonstrates that the differences of removal rates among the various geometries are largely due to the formation of the different turbulent fluids fields with different geometries.

  • PDF

A study on the action mechanism of internal pressures in straight-cone steel cooling tower under two-way coupling between wind and rain

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Yang, Q.;Wang, H.;Tamura, Y.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.11-27
    • /
    • 2018
  • The straight-cone steel cooling tower is a novel type of structure, which has a distinct aerodynamic distribution on the internal surface of the tower cylinder compared with conventional hyperbolic concrete cooling towers. Especially in the extreme weather conditions of strong wind and heavy rain, heavy rain also has a direct impact on aerodynamic force on the internal surface and changes the turbulence effect of pulsating wind, but existing studies mainly focus on the impact effect brought by wind-driven rain to structure surface. In addition, for the indirect air cooled cooling tower, different additional ventilation rate of shutters produces a considerable interference to air movement inside the tower and also to the action mechanism of loads. To solve the problem, a straight-cone steel cooling towerstanding 189 m high and currently being constructed is taken as the research object in this study. The algorithm for two-way coupling between wind and rain is adopted. Simulation of wind field and raindrops is performed with continuous phase and discrete phase models, respectively, under the general principles of computational fluid dynamics (CFD). Firstly, the rule of influence of 9 combinations of wind sped and rainfall intensity on flow field mechanism, the volume of wind-driven rain, additional action force of raindrops and equivalent internal pressure coefficient of the tower cylinder is analyzed. On this basis, the internal pressures of the cooling tower under the most unfavorable working condition are compared between four ventilation rates of shutters (0%, 15%, 30% and 100%). The results show that the 3D effect of equivalent internal pressure coefficient is the most significant when considering two-way coupling between wind and rain. Additional load imposed by raindrops on the internal surface of the tower accounts for an extremely small proportion of total wind load, the maximum being only 0.245%. This occurs under the combination of 20 m/s wind velocity and 200 mm/h rainfall intensity. Ventilation rate of shutters not only changes the air movement inside the tower, but also affects the accumulated amount and distribution of raindrops on the internal surface.

Removing SAR Speckle Noise Based on the Edge Sharpenig Algorithm (경계선 보존을 기반으로 한 SAR 영상의 잡영 제거 알고리즘에 대한 연구)

  • 손홍규;박정환;피문희
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.3-8
    • /
    • 2003
  • 모든 SAR 영상에는 전자기파 간의 간섭으로 인한 스페클 잡영(speckle)이 존재하며, 이를 제거하는 것은 양질의 SAR 영상을 얻기 위한 필수적인 전처리 과정 중 하나라고 할 수 있다. 그러나 이러한 스페클 잡영을 제거하기 위하여 기존에 제안되었던 알고리즘은 잡영은 효과적으로 감소시키는 반면 경계선과 같은 영상의 고유 정보까지 함께 감소시키는 한계가 있었다. 따라서 본 연구에서는 SAR 영상의 경계선은 보존시키면서 영상으로부터 불필요한 잡영을 제거할 수 있는 알고리즘을 구현하고, 기존의 알고리즘과 비교하여 그 효율성을 평가하고자 한다. 영상의 통계적 특성에 근거하는 기존의 알고리즘과는 달리 웨이블렛 변환(Wavelet transform)으로 경계선 및 특징 정보의 여부를 판별한 후 평균 필터(mean filter)를 적용하는 경계선 보존(edge sharpening) 알고리즘은 경계 정보의 신뢰성을 향상시킬 수 있으며, 1차원 필터를 수평, 수직, 대각선, 역대각선 방향으로 적용함으로써 하나의 영상소를 중심으로 모든 방향에 대한 경계선 여부를 확인할 수 있는 장점이 있다. 본 연구에서는 512 × 512로 절취한 1-look SAR 영상에 대하여 창 크기 5 × 5의 경계선 보존 필터를 적용하고 동일영상에 대하여 기존의 Lee, Kuan, Frost 필터 등의 실험결과를 비교함으로써 그 적합성을 판단하고자 하였다. 실험결과에 대한 수치적인 평가는 ①정규화 평균을 이용하여 평균값의 보존 여부, ②편차 계수를 이용한 스페클 잡영의 제거 여부, ③경계선 보존지수(EPI)를 이용한 경계선의 보존 정도를 통해 이루어졌다. 본 연구의 실험결과를 통해 경계선 보존 필터는 평균값의 보존 여부 및 스페클 잡영 제거 정도에 있어 다른 필터들과 큰 차이가 없지만 경계선보존지수는 다른 필터들에 비하여 가장 우수함을 확인할 수 있었다.rbon 탐식효율을 조사한 결과 B, D 및 E 분획에서 유의적인 효과를 나타내었다. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basis of the simplified model, the simulation was performed and the results could be confirmed by the experiments under various conditions.뢰, 결속 등 다차원

  • PDF