• Title/Summary/Keyword: 3-D shape

Search Result 3,421, Processing Time 0.032 seconds

An Accuracy Analysis of the 3D Automatic Body Measuring Machine (3차원 자동체형계측기 정밀도 검사)

  • Jeon, Soo-Hyung;Kwon, Suk-Dong;Park, Se-Jung;Kim, Jung-Yang;Song, Jung-Hoon;Kim, Hyun-Jin;Kim, Jong-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • 1. Objectives The Body Shape and Feature is one of the important standard for classification of Sasang Constitutions. In order to evaluate one's Body Shape and Feature objectively we have been developing the Body Measuring Machine. Now we develop the 3D Automatic Body Measuring Machine(3D-ABMM). So we make an analysis of the 3D-ABMM's Accuracy. 2. Methods By using the 3D-ABMM and Vivid 9i(3D laser scanner, Konica Minolta) we have a surface scan of the three objects which are the upper body of the female and male Manikin and a male model. We overlap each scan data using the RapidForm2006 (3D scan data solution, INUS Technology) and calculate the average distance and standard deviation between the same point of each scan data. 3. Results and Conclusions In the female Manikin, the average distance is 0.84mm and the standard deviation is 1.16mm and the maximum distance is 10.68mm. In the male Manikin, the average distance is 1.12mm and the standard deviation is 1.19mm and the maximum distance is 12.00mm. In the male model, the average distance is 3.26mm and the standard deviation is 2.59mm and the maximum distance is 12.75mm. From the results, 3D-ABMM has good accuracy for scanning body and will be a usable hardware of the 3D Automatic Body Analysis Machine.

  • PDF

A Study on Fashion Design Using Shape Grammar (형상문법(Shape Grammar)을 활용한 패션디자인 연구)

  • Soo Kyung Ko;Chul Yong Choi
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.123-132
    • /
    • 2023
  • The term 'module' is an architectural term. It refers to the components or systems that make up a finished product. As industries develop, modules have become one of the methods that can create diverse and creative designs. Traditional modular fashion design mainly focused on structural methods, such as the combination, assembly, overlap, and arrangement of modules, as well as the tessellation of geometric shapes. However, in this paper, significance lies in exploring the application of shape grammar, a design method in architecture, to fashion design. It aims to search for ways to express three-dimensional designs, derive designs that can be worn and produced, and propose fashion design by applying the rules of shape grammar to the design process. Through this analysis, the paper aims to examine the methods and characteristics of shape grammar. The research method of this paper is as follows. First, by utilizing optimized programs for implementing the modules of shape grammar, it was possible to propose a method for producing modules of shape grammar and suggest module designs. Additionally, effective methods of representation using the Clo 3D program were explored in the design development process. Second, by applying shape grammar to the fashion design process, five-dimensional modular fashion designs were proposed, including a bolero, dress 1, dress 2, setup, and coat. The proposed modular fashion design using shape grammar in this paper provides a rational design process that differentiates itself from traditional modular fashion design. By formalizing the shapes between modules and creating rules, it overcomes the limitations of design that rely on the designer's intuition or sensibility and enables the development of more diverse modular fashion designs. This application of shape grammar in fashion design can provide an important direction in exploring a sustainable fashion industry.

Analysis of Body Characteristics of the US Women Aged from 26 to 45 Using 3D Body Scan Data

  • Kim, Dong-Eun
    • International Journal of Human Ecology
    • /
    • v.15 no.2
    • /
    • pp.13-21
    • /
    • 2014
  • This study investigated the anthropometric characteristics of US women 26 to 45 years of age to classify their body shapes into different categories. Research data was obtained from 2950 women 26 to 45 years of age who participated in the SizeUSA study. A 26 to 35 years of age group and a 36 to 45 years of age group were selected from the data pool. A total of 26 measurements important for body shape classification and for apparel product development was used for the data analysis. Five factors accounted for the US women's body measurements. The body shapes of women were categorized into 4 types: Obese A-Shape, Overweight Y-Shape, Obese H-Shape, and Normal S-Shape. Normal S-Shape was the most common body shape type. More women in the 26 to 35 years of age group had Normal S-Shape type than women in the 36 to 45 years of age group. More women in the 36 to 45 years of age group had Obese A-Shape, Overweight Y-Shape, and Obese H-Shape than women in the 26 to 35 years of age group. Younger US women, 26 to 35 years of age had slimmer body sizes with more balanced body shapes; however, older US women, 36 to 45 years of age had larger body sizes with more various body shapes.

2-D Shape Matching using pivot vector and componentwise adaptive convergence factor (축 벡터 (pivot vector)와 적응 수렴 계수(cacf)를 사용한 2차원 형상 인식)

  • Har, Dong-Soo;Lee, Sang-Uk;Sung, Koeng-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1457-1460
    • /
    • 1987
  • 2-D shape matching algorithm is proposed which uses pivot vector and componentwise adaptive convergence factor. It is proved that proposed algorithm has better result than any other algorithm. It is to be expected that this algorithm will work effectively in 3-D shape matching.

  • PDF

Design Sensitivity Analysis for Shape Optimization of Electromagnetic Device with Finite Element Method (설계민감도해석과 FEM에 의한 전자소자의 형상최적화)

  • Ryu, Jae-Seop;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.835-837
    • /
    • 2002
  • This paper presents a shape optimization algorithm of electromagnetic devices using the design sensitivity analysis with FEM. The design sensitivity and adjoint variable formulas are derived for the 3D FEM with edge element. This algorithm is applied to 3D electro-magnet pole shape optimization problem to make a uniform flux density at the target region.

  • PDF

Robust 3D Model Hashing Scheme Based on Shape Feature Descriptor (형상 특징자 기반 강인성 3D 모델 해싱 기법)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.742-751
    • /
    • 2011
  • This paper presents a robust 3D model hashing dependent on key and parameter by using heat kernel signature (HKS), which is special shape feature descriptor, In the proposed hashing, we calculate HKS coefficients of local and global time scales from eigenvalue and eigenvector of Mesh Laplace operator and cluster pairs of HKS coefficients to 2D square cells and calculate feature coefficients by the distance weights of pairs of HKS coefficients on each cell. Then we generate the binary hash through binarizing the intermediate hash that is the combination of the feature coefficients and the random coefficients. In our experiment, we evaluated the robustness against geometrical and topological attacks and the uniqueness of key and model and also evaluated the model space by estimating the attack intensity that can authenticate 3D model. Experimental results verified that the proposed scheme has more the improved performance than the conventional hashing on the robustness, uniqueness, model space.

Noise reduction for mesh smoothing of 3D mesh data

  • Hyeon, Dae-Hwan;WhangBo, Taeg-Keun
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, we propose a mesh smoothing method for mesh models with noise. The proposed method enables not only the removal of noise from the vertexes but the preservation and smoothing of shape recognized as edges and comers. The magnitude ratio of 2D area and 3D volume in mesh data is adopted for the smoothing of noise. Comparing with previous smoothing methods, this method does not need many iteration of the smoothing process and could preserve the shape of original model. Experimental results demonstrate improved performance of the proposed approach in 3D mesh smoothing.

3D Mesh Reconstruction Technique from Single Image using Deep Learning and Sphere Shape Transformation Method (딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D Mesh 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.160-168
    • /
    • 2022
  • In this paper, we propose a 3D mesh reconstruction method from a single image using deep learning and a sphere shape transformation method. The proposed method has the following originality that is different from the existing method. First, the position of the vertex of the sphere is modified to be very similar to the 3D point cloud of an object through a deep learning network, unlike the existing method of building edges or faces by connecting nearby points. Because 3D point cloud is used, less memory is required and faster operation is possible because only addition operation is performed between offset value at the vertices of the sphere. Second, the 3D mesh is reconstructed by covering the surface information of the sphere on the modified vertices. Even when the distance between the points of the 3D point cloud created by correcting the position of the vertices of the sphere is not constant, it already has the face information of the sphere called face information of the sphere, which indicates whether the points are connected or not, thereby preventing simplification or loss of expression. can do. In order to evaluate the objective reliability of the proposed method, the experiment was conducted in the same way as in the comparative papers using the ShapeNet dataset, which is an open standard dataset. As a result, the IoU value of the method proposed in this paper was 0.581, and the chamfer distance value was It was calculated as 0.212. The higher the IoU value and the lower the chamfer distance value, the better the results. Therefore, the efficiency of the 3D mesh reconstruction was demonstrated compared to the methods published in other papers.

3D FEM simulation for connector crimping process of wire harness (와이어 하네스의 커텍터 압착공정에 대한 3차원 유한요소해석)

  • Gu, S.M.;Yin, Z.H.;Park, J.K.;Choi, H.S.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.245-249
    • /
    • 2009
  • According to the increase of intelligent vehicles many automotive electric components are installed. The wire harness which connects those also increases. The crimping process for compressing the copper wire bundle into the terminal is a key process to assure the good quality of wire harness. For the case of inadequate forming condition many shape failures such as less-filling, over-filling are happen in the crimping process. Even though the quality of crimping shape is satisfactory the quality check for electrical resistance of wire harness is sometime not satisfied the qualification due to large variation of electrical resistance of wire harness under climate test. This large variation is thought to be related with the malfunction automotive electric system and caused by the internal stress of wire, which occurred during the crimping process. In this paper we develop the 3D-FEM simulation scheme and design methodology of optimum terminal shape. Also the effect of terminal shape on the residual stress is discussed.

  • PDF

3D Shape Descriptor with Interatomic Distance for Screening the Molecular Database (분자 데이터베이스 스크리닝을 위한 원자간 거리 기반의 3차원 형상 기술자)

  • Lee, Jae-Ho;Park, Joon-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.404-414
    • /
    • 2009
  • In the computational molecular analysis, 3D structural comparison for protein searching plays a very important role. As protein databases have been grown rapidly in size, exhaustive search methods cannot provide satisfactory performance. Because exhaustive search methods try to handle the structure of protein by using sphere set which is converted from atoms set, the similarity calculation about two sphere sets is very expensive. Instead, the filter-and-refine paradigm offers an efficient alternative to database search without compromising the accuracy of the answers. In recent, a very fast algorithm based on the inter-atomic distance has been suggested by Ballester and Richard. Since they adopted the moments of distribution with inter-atomic distance between atoms which are rotational invariant, they can eliminate the structure alignment and orientation fix process and perform the searching faster than previous methods. In this paper, we propose a new 3D shape descriptor. It has properties of the general shape distribution and useful property in screening the molecular database. We show some experimental results for the validity of our method.