• 제목/요약/키워드: 3-D object tracking

Search Result 160, Processing Time 0.023 seconds

A Review of 3D Object Tracking Methods Using Deep Learning (딥러닝 기술을 이용한 3차원 객체 추적 기술 리뷰)

  • Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.1
    • /
    • pp.30-37
    • /
    • 2021
  • Accurate 3D object tracking with camera images is a key enabling technology for augmented reality applications. Motivated by the impressive success of convolutional neural networks (CNNs) in computer vision tasks such as image classification, object detection, image segmentation, recent studies for 3D object tracking have focused on leveraging deep learning. In this paper, we review deep learning approaches for 3D object tracking. We describe key methods in this field and discuss potential future research directions.

Object detection and tracking using a high-performance artificial intelligence-based 3D depth camera: towards early detection of African swine fever

  • Ryu, Harry Wooseuk;Tai, Joo Ho
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.17.1-17.10
    • /
    • 2022
  • Background: Inspection of livestock farms using surveillance cameras is emerging as a means of early detection of transboundary animal disease such as African swine fever (ASF). Object tracking, a developing technology derived from object detection aims to the consistent identification of individual objects in farms. Objectives: This study was conducted as a preliminary investigation for practical application to livestock farms. With the use of a high-performance artificial intelligence (AI)-based 3D depth camera, the aim is to establish a pathway for utilizing AI models to perform advanced object tracking. Methods: Multiple crossovers by two humans will be simulated to investigate the potential of object tracking. Inspection of consistent identification will be the evidence of object tracking after crossing over. Two AI models, a fast model and an accurate model, were tested and compared with regard to their object tracking performance in 3D. Finally, the recording of pig pen was also processed with aforementioned AI model to test the possibility of 3D object detection. Results: Both AI successfully processed and provided a 3D bounding box, identification number, and distance away from camera for each individual human. The accurate detection model had better evidence than the fast detection model on 3D object tracking and showed the potential application onto pigs as a livestock. Conclusions: Preparing a custom dataset to train AI models in an appropriate farm is required for proper 3D object detection to operate object tracking for pigs at an ideal level. This will allow the farm to smoothly transit traditional methods to ASF-preventing precision livestock farming.

3-D Object Tracking using 3-D Information and Optical Correlator in the Stereo Vision System (스테레오 비젼 시스템에서 3차원정보와 광 상관기를 이용한 3차원 물체추적 방법)

  • 서춘원;이승현;김은수
    • Journal of Broadcast Engineering
    • /
    • v.7 no.3
    • /
    • pp.248-261
    • /
    • 2002
  • In this paper, we proposed a new 3-dimensional(3-D) object-tracking algorithm that can control a stereo camera using a variable window mask supported by which uses ,B-D information and an optical BPEJTC. Hence, three-dimensional information characteristics of a stereo vision system, distance information from the stereo camera to the tracking object. can be easily acquired through the elements of a stereo vision system. and with this information, we can extract an area of the tracking object by varying window masks. This extractive area of the tracking object is used as the next updated reference image. furthermore, by carrying out an optical BPEJTC between a reference image and a stereo input image the coordinates of the tracking objects location can be acquired, and with this value a 3-D object tracking can be accomplished through manipulation of the convergence angie and a pan/tilt of a stereo camera. From the experimental results, the proposed algorithm was found to be able to the execute 3-D object tracking by extracting the area of the target object from an input image that is independent of the background noise in the stereo input image. Moreover a possible implementation of a 3-D tele-working or an adaptive 3-D object tracker, using the proposed algorithm is suggested.

Combining an Edge-Based Method and a Direct Method for Robust 3D Object Tracking

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.167-177
    • /
    • 2021
  • In the field of augmented reality, edge-based methods have been popularly used in tracking textureless 3D objects. However, edge-based methods are inherently vulnerable to cluttered backgrounds. Another way to track textureless or poorly-textured 3D objects is to directly align image intensity of 3D object between consecutive frames. Although the direct methods enable more reliable and stable tracking compared to using local features such as edges, they are more sensitive to occlusion and less accurate than the edge-based methods. Therefore, we propose a method that combines an edge-based method and a direct method to leverage the advantages from each approach. Experimental results show that the proposed method is much robust to both fast camera (or object) movements and occlusion while still working in real time at a frame rate of 18 Hz. The tracking success rate and tracking accuracy were improved by up to 84% and 1.4 pixels, respectively, compared to using the edge-based method or the direct method solely.

Learning Methods for Effective Object Tracking in 3D Storytelling Augmented Reality (3D 스토리텔링 증강현실에서 효과적인 객체 추적을 위한 학습 방법)

  • Choi, Dae han;Han, Woo ri;Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Recently, Depending on expectancy effect and ripple effect of augmented reality, the convergence between augmented reality and culture & arts are being actively conducted. This paper proposes a learning method for effective object tracking in 3D storytelling augmented reality in cultural properties. The proposed system is based on marker-less tracking, and there are four modules that are recognition, tracking, detecting and learning module. Recognition module is composed of SURF and LSH, and then this module generates standard object information. Tracking module tracks an object using object tracking based on reliability. This information is stored in Learning module along with learned time information. Detecting module finds out the object based on having the best possible knowledge available among the learned objects information, when the system fails to track. Also, it proposes a method for robustly implementing a 3D storytelling augmented reality in cultural properties in the future.

Object Tracking in 3-D Space with Passive Acoustic Sensors using Particle Filter

  • Lee, Jin-Seok;Cho, Shung-Han;Hong, Sang-Jin;Lim, Jae-Chan;Oh, Seong-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1632-1652
    • /
    • 2011
  • This paper considers the object tracking problem in three dimensional (3-D) space when the azimuth and elevation of the object are available from the passive acoustic sensor. The particle filtering technique can be directly applied to estimate the 3-D object location, but we propose to decompose the 3-D particle filter into the three planes' particle filters, which are individually designed for the 2-D bearings-only tracking problems. 2-D bearing information is derived from the azimuth and elevation of the object to be used for the 2-D particle filter. Two estimates of three planes' particle filters are selected based on the characterization of the acoustic sensor operation in a noisy environment. The Cramer-Rao Lower Bound of the proposed 2-D particle filter-based algorithm is derived and compared against the algorithm that is based on the direct 3-D particle filter.

Tracking of 2D or 3D Irregular Movement by a Family of Unscented Kalman Filters

  • Tao, Junli;Klette, Reinhard
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.307-314
    • /
    • 2012
  • This paper reports on the design of an object tracker that utilizes a family of unscented Kalman filters, one for each tracked object. This is a more efficient design than having one unscented Kalman filter for the family of all moving objects. The performance of the designed and implemented filter is demonstrated by using simulated movements, and also for object movements in 2D and 3D space.

Realtime Markerless 3D Object Tracking for Augmented Reality (증강현실을 위한 실시간 마커리스 3차원 객체 추적)

  • Min, Jae-Hong;Islam, Mohammad Khairul;Paul, Anjan Kumar;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.272-277
    • /
    • 2010
  • AR(Augmented Reality) needs medium between real and virtual, world, and recognition techniques are necessary to track an object continuously. Optical tracking using marker is mainly used, but it takes time and is inconvenient to attach marker onto the target objects. Therefore, many researchers try to develop markerless tracking techniques nowaday. In this paper, we extract features and 3D position from 3D objects and suggest realtime tracking based on these features and positions, which do not use just coplanar features and 2D position. We extract features using SURF, get rotation matrix and translation vector of 3D object using POSIT with these features and track the object in real time. If the extracted features are nor enough and it fail to track the object, then new features are extracted and re-matched to recover the tracking. Also, we get rotation in matrix and translation vector of 3D object using POSIT and track the object in real time.

Robust Position Tracking for Position-Based Visual Servoing and Its Application to Dual-Arm Task (위치기반 비주얼 서보잉을 위한 견실한 위치 추적 및 양팔 로봇의 조작작업에의 응용)

  • Kim, Chan-O;Choi, Sung;Cheong, Joo-No;Yang, Gwang-Woong;Kim, Hong-Seo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.129-136
    • /
    • 2007
  • This paper introduces a position-based robust visual servoing method which is developed for operation of a human-like robot with two arms. The proposed visual servoing method utilizes SIFT algorithm for object detection and CAMSHIFT algorithm for object tracking. While the conventional CAMSHIFT has been used mainly for object tracking in a 2D image plane, we extend its usage for object tracking in 3D space, by combining the results of CAMSHIFT for two image plane of a stereo camera. This approach shows a robust and dependable result. Once the robot's task is defined based on the extracted 3D information, the robot is commanded to carry out the task. We conduct several position-based visual servoing tasks and compare performances under different conditions. The results show that the proposed visual tracking algorithm is simple but very effective for position-based visual servoing.

  • PDF

Robust Visual Tracking for 3-D Moving Object using Kalman Filter (칼만필터를 이용한 3-D 이동물체의 강건한 시각추적)

  • 조지승;정병묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1055-1058
    • /
    • 2003
  • The robustness and reliability of vision algorithms is the key issue in robotic research and industrial applications. In this paper robust real time visual tracking in complex scene is considered. A common approach to increase robustness of a tracking system is the use of different model (CAD model etc.) known a priori. Also fusion or multiple features facilitates robust detection and tracking of objects in scenes of realistic complexity. Voting-based fusion of cues is adapted. In voting. a very simple or no model is used for fusion. The approach for this algorithm is tested in a 3D Cartesian robot which tracks a toy vehicle moving along 3D rail, and the Kalman filter is used to estimate the motion parameters. namely the system state vector of moving object with unknown dynamics. Experimental results show that fusion of cues and motion estimation in a tracking system has a robust performance.

  • PDF