• Title/Summary/Keyword: 3-D numerical method

Search Result 1,425, Processing Time 0.027 seconds

Probabilistic tunnel face stability analysis: A comparison between LEM and LAM

  • Pan, Qiujing;Chen, Zhiyu;Wu, Yimin;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • It is a key issue in the tunnel design to evaluate the stability of the excavation face. Two efficient analytical models in the context of the limit equilibrium method (LEM) and the limit analysis method (LAM) are used to carry out the deterministic calculations of the safety factor. The safety factor obtained by these two models agrees well with that provided by the numerical modelling by FLAC 3D, but consuming less time. A simple probabilistic approach based on the Mote-Carlo Simulation technique which can quickly calculate the probability distribution of the safety factor was used to perform the probabilistic analysis on the tunnel face stability. Both the cumulative probabilistic distribution and the probability density function in terms of the safety factor were obtained. The obtained results show the effectiveness of this probabilistic approach in the tunnel design.

3-D Groundwater Flow Analysis of Excavated Ground by Reliability Method (신뢰성기법에 의한 굴착지반에서의 3차원 지하수 흐름해석)

  • Kim, Hong-Seok;Park, Joon-Mo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.69-76
    • /
    • 2006
  • A reliability-groundwater flow analysis is performed and the influence of flow parameters on the probability of exceeding the threshold value is examined. For this study, the 3-D numerical groundwater flow program, DGU-FLOW, is developed by extending the 2-D flow program and is coupled to the first and second order reliability program. The 3-D flow program is verified by solving the examples of groundwater flow through the underground excavation and comparing the results from commercial MODFLOW program. Reliability routine of the program is also verified by comparing the probability of failure with that of Monte-Carlo Simulation. The reliability analysis of the groundwater flow showed that the probability of failure from the first and second order reliability method are quite close to that of Monte-Carlo Simulation. from the parametric study of hydraulic conductivity of soil layers, the increase of both mean and variance of hydraulic conductivity results in the increase of probability of exceeding the threshold flow quantity. The probability of failure was more sensitive to constant head located at the end of the flow domain than the other parameters.

NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD (가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.

Dynamics of moored arctic spar interacting with drifting level ice using discrete element method

  • Jang, HaKun;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • v.11 no.4
    • /
    • pp.313-330
    • /
    • 2021
  • In this study, the dynamic interaction between an Arctic Spar and drifting level ice is examined in time domain using the newly developed ice-hull-mooring coupled dynamics program. The in-house program, CHARM3D, which is the hull-riser-mooring coupled dynamic simulator is extended by coupling with the open-source discrete element method (DEM) simulator, LIGGGHTS. In the LIGGGHTS module, the parallel-bonding method is implemented to model the level ice using an assembly of multiple bonded spherical particles. As a case study, a spread-moored Artic Spar platform, whose hull surface near waterline is the inverted conical shape, is chosen. To determine the breaking-related DEM parameter (the critical bonding strength), the four-point numerical bending test is used. A series of numerical simulations is systematically performed under the various ice conditions including ice drift velocity, flexural strength, and thickness. Then, the effects of these parameters on the ice force, platform motions, and mooring tensions are discussed. The simulations reveal various features of dynamic interactions between the drifting ice and moored platform for various ice conditions including the novel synchronous resonance at low ice speed. The newly developed simulator is promising and can repeatedly be used for the future design and analysis including ice-floater-mooring coupled dynamics.

Analysis of De-noising by Thresholding (문턱치에 따른 잡음제거 분석)

  • Seo, Jung-Ick;Park, Eun-kyoo
    • Journal of the Korea society of information convergence
    • /
    • v.6 no.2
    • /
    • pp.45-49
    • /
    • 2013
  • Electrocardiogram(ECG) signal noise as well as conducting other bio-signal measurement were generated. It was intened to enhance the accuracy of cadiac disease diagnosis with removing signal white-noise. Sampling signal was made with generating white-noise. The noise were removed using wavelet transforms and thresholding. Removed noise were compared numerical using SNR(signal to noise ratio). The results compared SNR showed that SURE method was 5.931, 4.9301 in 3, 5dB noise, uninversal was 3.6590, 1.9698 in 7, 9dB noise. De-noising by Thresholding removed noise effectively. ECG signal is expected to improve the accuracy of cadiac desease dianosis.

  • PDF

Assessment of 3D earthquake response of the Arhavi Highway Tunnel considering soil-structure interaction

  • Sevim, Baris
    • Computers and Concrete
    • /
    • v.11 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • This paper describes earthquake response of the Arhavi Highway Tunnel its geometrical properties, 3D finite element model and the linear time history analyses under a huge ground motion considering soil-structure interaction. The Arhavi Highway Tunnel is one of the tallest tunnels constructed in the Black Sea region of Turkey as part of the Coast Road Project. The tunnel has two tubes and each of them is about 1000 m tall. In the study, lineartime history analyses of the tunnel are performed applying north-south, east-west and up accelerations components of 1992 Erzincan, Turkey ground motion. In the time history analyses, Rayleigh damping coefficients are calculated using main natural frequency obtained from modal analysis. Element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motion. Because of needed too much memory for the analyses, the first 10 second of the ground motions, which is the most effective duration, is taken into account in calculations. The results obtained 3D finite element model are presented. In addition, the displacement and stress results are observed to be allowable level of the concrete material during the earthquakes.

Study on the Thermal Deformation of the Air-conditioner Indoor Unit Assembly Using 3D Measurement and Finite Element Analysis (에어컨 실내기 사출 조립품의 열 변형 3D측정과 유한요소해석)

  • Hong, Seokmoo;Hwang, Jihoon;Kim, Cheulgon;Eom, Seong-uk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-255
    • /
    • 2015
  • Thermal deformation, such as bending and twisting, occurs among the polymer parts of air-conditioner indoor units because of repetitive temperature change during heating operation. In this study, a numerical method employing finite-element analysis to efficiently simulate the thermal deformation of an assembly is proposed. Firstly, the displacement of an actual assembly produced by thermal deformation was measured using a 3D optical measurement system. The measurement results indicated a general downward sag of the assembly, and the maximum displacement value was approximately 1 mm. The temperature distribution was measured using a thermographic camera, and the results were used as initial-temperature boundary conditions to perform temperature-displacement analysis. The simulation results agreed well with the measured data. To reduce the thermal deformation, the stiffness increased 100%. As the results, the maximum displacement decreased by approximately 5.4% and the twisting deformation of the holder improved significantly.

Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation (영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토)

  • Kim, Yong-Uhn;Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.469-476
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

Mechanical behaviour of advanced composite beams via a simple quasi-3D integral higher-order beam theory

  • Khaled Bouakkaz;Ibrahim Klouche Djedid;Kada Draiche;Abdelouahed Tounsi;Muzamal Hussain
    • Advances in materials Research
    • /
    • v.13 no.5
    • /
    • pp.335-353
    • /
    • 2024
  • In the present paper, a simple quasi-3D integral higher-order beam theory (HBT) is presented, in which both shear deformation and thickness stretching effects are included for mechanical analysis of advanced composite beams with simply supported boundary conditions, handling mainly bending, buckling, and free vibration problems. The kinematics is based on a novel displacement field which includes the undetermined integral terms and the parabolic function is used in terms of thickness coordinate to represent the effect of transverse shear deformation. The governing equilibrium equations are drawn from the dynamic version of the principle of virtual work; whereas the solution of the problem is obtained by assuming a Navier technique for simply supported advanced composite beams subjected to sinusoidally and uniformly distributed loads. The correctness of the present computational method is checked by comparing the obtained numerical results with quasi-3D solutions found in the literature and with those provided by other shear deformation beam theories. It can be confirmed that the proposed model, which does not involve any shear correction factor, is not only accurate but also simple and useful in solving the static and dynamic response of advanced composite beams.

A numerical study on the seepage failure by heave in sheeted excavation pits

  • Koltuk, Serdar;Fernandez-Steeger, Tomas M.;Azzam, Rafig
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.513-530
    • /
    • 2015
  • Commonly, the base stability of sheeted excavation pits against seepage failure by heave is evaluated by using two-dimensional groundwater flow models and Terzaghi's failure criterion. The objective of the present study is to investigate the effect of three-dimensional groundwater flow on the heave for sheeted excavation pits with various dimensions. For this purpose, the steady-state groundwater flow analyses are performed by using the finite element program ABAQUS 6.12. It has been shown that, in homogeneous soils depending on the ratio of half of excavation width to embedment depth b/D, the ratio of safety factor obtained from 3D analyses to that obtained from 2D analyses $FS_{(3D)}/FS_{(2D)}$ can reach up to 1.56 and 1.34 for square and circular shaped excavations, respectively. As failure body, both an infinitesimal soil column adjacent to the wall (Baumgart & Davidenkoff's criterion) and a three-dimensional failure body with the width suggested by Terzaghi for two-dimensional cases are used. It has been shown that the ratio of $FS_{(Terzaghi)}/FS_{(Davidenkoff)}$ varies between 0.75 and 0.94 depending on the ratio of b/D. Additionally, the effects of model size, the shape of excavation pit and anisotropic permeability on the heave are studied. Finally, the problem is investigated for excavation pits in stratified soils, and important points are emphasized.