• Title/Summary/Keyword: 3-D motion capture system

Search Result 123, Processing Time 0.022 seconds

A Hand Gesture Recognition System using 3D Tracking Volume Restriction Technique (3차원 추적영역 제한 기법을 이용한 손 동작 인식 시스템)

  • Kim, Kyung-Ho;Jung, Da-Un;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.201-211
    • /
    • 2013
  • In this paper, we propose a hand tracking and gesture recognition system. Our system employs a depth capture device to obtain 3D geometric information of user's bare hand. In particular, we build a flexible tracking volume and restrict the hand tracking area, so that we can avoid diverse problems caused by conventional object detection/tracking systems. The proposed system computes running average of the hand position, and tracking volume is actively adjusted according to the statistical information that is computed on the basis of uncertainty of the user's hand motion in the 3D space. Once the position of user's hand is obtained, then the system attempts to detect stretched fingers to recognize finger gesture of the user's hand. In order to test the proposed framework, we built a NUI system using the proposed technique, and verified that our system presents very stable performance even in the case that multiple objects exist simultaneously in the crowded environment, as well as in the situation that the scene is occluded temporarily. We also verified that our system ensures running speed of 24-30 frames per second throughout the experiments.

Lower extremity stiffness over different landing methods during hopping (호피 시 착지방법에 따른 하지 강성도)

  • Lee, J.J.;Son, J.S.;Kim, J.Y.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.105-108
    • /
    • 2011
  • The purpose of the present study was to analyze the lower stiffness over the difference between soft and stiff landings during hopping. Five male subjects performed hopping on two legs at 2.5 Hz. During the experiments, 3D motion capture system was used to obtain the kinematic data and two force plates were synchronized to calculate the kinetic data. We determined lower extremity stiffness of the knee and ankle from kinetic and kinematic data. Leg stiffness was approximately 1.2-times significantly higher in stiff landing than in soft landing_ There was no significant difference in knee joint stiffness between soft and stiff landings. Ankle joint stiffness was approximately 1.34-times significantly higher in stiff landing than in soft landing. These results suggest that humans adjust lower extremity stiffness over the comparison of two different landing methods we evaluated.

Development of a Golf Putting Result Recording System Using USB Camera (USB 카메라를 이용한 골프 퍼팅 결과 기록 장치의 개발)

  • Kim, Hyung-Sik;Choi, Jin-Seung;Tack, Gye-Rae;Lim, Young-Tae;Yi, Jeong-Han
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.239-243
    • /
    • 2010
  • The putting stroke accounts for 40~50% of total stroke for a golf rounding and most golfers have difficulties on the puting. Studies for the putting stroke have been conducted by analyzing various factors such as kinematics, kinetics, psychologic and physiologic parameters. A lot of devices were developed to support the studies. However there was no appropriate method to measure the position of the ball quantitatively. In this study, we developed a new measurement system to measure and evaluate the putting result. The developed system uses a USB camera to take the 2-dimensional image of the surface including the hole cup at the center of the image and the ball. The position of the ball is extracted as a set of distance and angle in polar coordinate system. We evaluated the new system with an indoor set-up for putting experiments and the system provided accurate measurement results. The proposed system can be combined with the other measurement systems such as 3D motion capture system and force plate without any restriction.

Ergonomic Evaluation of Trunk-Forearm Support Type Chair

  • Lim, Seung Yeop;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2014
  • Objective: The aim of this study is to investigate the effects of trunk-forearm supported sitting on trunk flexion angle, trunk extensor fatigue and seat contact pressure. Background: The relationship between sitting posture and musculoskeletal disorders of the trunk extensor fatigue and seat contact pressure has been documented. The trunk-forearm support type ergonomic chair was devised from the fact that trunk-forearm support has been reported to reduce trunk extensor activity and discomfort. Method: Using three different sitting postures, upright ($P_1$), trunk-forearm supported ($P_2$) and normal sitting ($P_3$), six healthy subjects participated in the study. Motion capture system was used to collect head and trunk flexion angle, and surface electromyography (sEMG) was used to collect myoelectric signal of upper trapezius, lower trapezius, erector spinae, multifidus, and pressure mat system was used to measure seat contact pressure. Results: When trunk and forearm were supported by the ergonomic chair, higher head flexion angle showed upright > trunk-forearm supported > normal in order, and muscle fatigue showed less than upright and normal sitting. Mean seat contact pressure decreased 19% than upright sitting. But muscle fatigue was not affected by each condition. Conclusion: Trunk-forearm supported sitting of the ergonomic chair showed positive effect in respect of trunk and head flexion angle, trunk extensor fatigue, seat contact pressure. To acquire comprehensive understanding of the effectiveness of the ergonomic chair, further studies such as anatomical effects from measurement of external applied loading effect to the body from interface pressure analysis are required. Application: The results of the publishing trend analysis might help physiological effects of trunk-forearm support type chair.

Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Half a Year Prospective Study- (노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -전향적 연구(Prospective Study)-)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.79-88
    • /
    • 2019
  • Objective: The aim of this study was to determine the peak torques of the knee and ankle joint and local stability of the lower extremity's joints, and muscle activation patterns of the lower extremity's muscles between fallers and non-fallers in the elderly women during walking. Method: Four elderly women (age: $74.5{\pm}5.2yrs.$; height: $152.1{\pm}5.6cm$; mass: $55.3{\pm}5.4kg$; preference walking speed: $1.19{\pm}0.06m/s$) who experienced falls within six months since experiment had been conducted (falls group) and thirty-six subjects ($74.2{\pm}3.09yrs.$; height: $153.6{\pm}4.9cm$; mass: $56.7{\pm}6.4kg$; preference walking speed: $1.24{\pm}0.10m/s$) who had no experience in falls (non-falls group) within this periods participated in this study. They were measured torque peaks of the knee and ankle joint using a Human Norm and while they were walking on a treadmill at their natural pace, kinematic variables and EMG signals were collected with using a 3-D motion capture system and a wireless EMG system, respectively. Lyapunov Exponent (LyE) was determined to observe the dynamic local stability of the lower extremity's joints, and muscles activation and their co-contraction index were also analysed from EMG signals. Hypotheses between falls and non-falls group were tested using paired t-test and Mann-Whitey. Level of significance was set at p<.05. Results: Local dynamic stability in the adduction-abduction movement of the knee joint was significantly lower in falling group than non-falling group (p<.05). Conclusion: In conclusion, muscles which act on the abduction-adduction movement of the knee joint need to be strengthened to prevent from potential falls during walking. However, a small number of samples for fallers make it difficult to generalize the results of this study.

Design Guideline of Height-adjustable Wash Basin for Persons with Disability (고령자 및 장애인용 높이조절 세면기의 설계 가이드라인)

  • Bae, Ju-Hwan;Moon, Inhyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.4
    • /
    • pp.349-354
    • /
    • 2017
  • In this study, we proposed a design guideline of height-adjustable wash basin which is an assistive product for personal hygiene for persons with disability. We performed biomechanical assessments using both of conventional and prototype height adjustable wash basin. Total five elderly subjects (all male, age $68.6{\pm}4.3yrs.$, height $169.8{\pm}5.7cm$, weight $70{\pm}7.7kg$) participated for the assessment test. Each joint angles were measured by using a 3D motion capture system when subjects use wash basins, and the lumbar moment of each subjects was estimated based on a human body model. From the assessment results, a design guideline which has the range of the height from 652[mm] to 1162[mm] was proposed. Then additional assessment tests with five healthy subjects ($25.8{\pm}1.8yrs.$, $175.5{\pm}5.8cm$, $74{\pm}15.7kg$) were performed in order to verify effectiveness of the design guideline. The results showed a height-adjustable wash basin applied the proposed design guideline was effective to reduce the lumbar moment.

The Effects of Ramp Gradients and Pushing-Pulling Techniques on Lumbar Spinal Load in Healthy Workers

  • Pinupong, Chalearmpong;Jalayondeja, Wattana;Mekhora, Keerin;Bhuanantanondh, Petcharatana;Jalayondeja, Chutima
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • Background: Many tasks in industrial and health care setting are involved with pushing and pulling tasks up or down on a ramp. An efficient method of moving cart which reduces the risk of low back pain should be concerned. This study aimed to investigate the effects of handling types (HTs) and slope on lumbar spinal load during moving a cart on a ramp. We conducted a 2 × 2 × 4 factorial design with three main factors: 2 HTs, 2 handling directions of moving a cart and 4 degrees of ramp slope. Methods: Thirty healthy male workers performed 14 tasks consist of moving a cart up and down on the ramp of 0°, 10°, 15°, and 20° degrees with pushing and pulling methods. Joint angles from a 3D motion capture system combined with subject height, body weight, and hand forces were used to calculate the spinal load by the 3DSSPP program. Results: Our results showed significant effect of HT, handling directions and slope on compression and shear force of the lumbar spine (p < 0.001). When the ramp gradient increased, the L4/5 compression forces increased in both pushing and pulling (p < 0.001) Shear forces increased in pulling and decreased in pushing in all tasks. At high slopes, pulling generated more compression and shear forces than that of pushing (p < 0.01). Conclusion: Using the appropriate technique of moving a cart on the ramp can reduce the risk of high spinal load, and the pushing is therefore recommended for moving a cart up/down on ramp gradients.

A Comparative Study of Characters of Muscle Activity in Lower Limb and Gait Pattern on Type of Heel Rockers (신발 아웃솔의 굴곡 형태에 따른 하지근육활동의 특성과 보행 패턴의 비교연구)

  • An, Song-Y;Kim, Sang-Bum;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • The purpose of this study was to investigate muscle activity and gait pattern in lower limb depending on the outsole of heel rockers. Fifteen healthy men volunteered for this experiment. Each subject performed totally three trails with two pairs of different heel rocker shoes and a pair of normal running shoes at speed of 1.33m/s for 1 minute during walking on a treadmill. Kinematic data gathered in 100Hz was recorded and analyzed by using the 3D motion capture system to measure the trunk tilt and joint angle of the right lower limb. And the lower extremity muscle activities were simultaneously recorded in 1000Hz and assessed by using EMG. The statistical analysis was the one-way ANOVA with the repeated measures to compare among the three kinds of shoes. The level of statistical significance for all tests was 0.05. Joint angle of lower limb was showed statistically significant different in MST(hip joint), LHS(ankle joint), and RTO(knee and ankle joint). Muscle activity of rectus femoris and biceps femoris was statistically increased in both heel rocker shoes during gait cycle on treadmill. The maximum peak time of tibialis anterior in the negative heel rocker showed the delay of approximately 23.8%time than normal shoes. Gait pattern variability of the negative heel rocker was increased in the first half of the stance phase and the variability of the positive heel rocker was increased in the terminal stance phase. In Conclusion, stability was decreased in between joints of lower limb on positive heel rocker than negative heel rocker. This study found that there were different joint angle, muscle activity, gait pattern and coordinate system of the lower limb in each kind of shoes. These unstability affected the lower extremity and the whole body. A further study has to be continued with study of rehabilitation and exercise for a long-term.

Immediate Effects of the Downhill Treadmill Walking Exercise on Thoracic Angle and Thoracic Extensor Muscle Activity in Subjects With Thoracic Kyphosis (내리막 경사로 트레드밀 걷기 훈련이 흉추 뒤굽음증의 흉추각도와 흉추기립근 활성도에 미치는 영향)

  • Lee, Jun-hyeok;Jeon, Hye-seon;Kim, Ji-hyun;Park, Joo-hee;Yoon, Hyeo-bin
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • Background: In previous studies, changes in postural alignment were found when the slope was changed during walking. Downhill walking straightens the trunk by shifting the line of gravity backward. Objects: This study investigated the effect of the downhill treadmill walking exercise (DTWE) on thoracic angle and thoracic erector spinae (TES) activation in subjects with thoracic kyphosis. Methods: A total of 20 subjects with thoracic kyphosis were recruited for this study. All the subjects performed the DTWE for 30 minutes. A surface EMG and 3D motion capture system were used to measure TES activation and thoracic angle before and after the DTWE. Paired t-tests were used to confirm the effect of the DTWE (p<.05). Results: Both the thoracic angle and TES activation had significantly increased after the DTWE compared to the baseline (p<.05). An increase in the thoracic angle indicates a decrease in kyphosis. Conclusion: The DTWE is effective for thoracic kyphosis patients as it decreases their kyphotic posture and increases the TES activation. Future longitudinal studies are required to investigate the long-term effects of the DTWE.

Implementation of Gait Analysis System Based on Inertial Sensors (관성센서 기반 보행 분석 시스템 구현)

  • Cho, J.S.;Kang, S.I.;Lee, K.H.;Jang, S.H.;Kim, I.Y.;Lee, J.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait analysis system to measure and analyze lower-limb movements. We developed an integral AHRS(Attitude Heading Reference System) using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE(Root Mean Square Error) of 1.08 and 1.72 degree in yaw and pitch angle. In order to evaluate the performance of our the gait analysis system, we compared the joint angle for the hip, knee and ankle with those provided by Vicon system. The result shows that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limb or gait analysis during the post-stroke recovery.

  • PDF