• Title/Summary/Keyword: 3-D modeling

Search Result 3,463, Processing Time 0.034 seconds

Development of BIM Templates for Vest-Pocket Park Landscape Design (소공원의 조경설계를 위한 BIM 템플릿 개발)

  • Seo, Young-hoon;Kim, Dong-pil;Moon, Ho-Gyeong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.40-50
    • /
    • 2016
  • A BIM, which is being applied actively to the construction and civil construction industries, is a technology that can maximize efficiency of various sectors from initial planning and design, construction, and maintenance, to demolition; however, it is in the introductory phase in the field of domestic landscaping. In order to introduce and promote BIM in the field of landscape design, this study developed a prototype of a library and template and analyzed the performance of trial application. For the development of a prototype, annotations and types were analyzed from floor plans of existing small parks, and components of landscape template were deduced. Based on this, play facilities, pergola, and benches were madeintofamily and templates, making automatic design possible. In addition, annotations and tags that are often used in landscape design were made, and a 3D view was materialized through visibility/graphic reassignment. As for tables and quantities, boundary stone table, mounding table, summary sheet of quantities, table of contents, and summary sheet of packaging quantities were grouped and connected with floor plans; regarding landscaping trees, classification criteria and name of trees that are suitable for domestic situations were applied. A landscape template was created to enable the library file format(rfa) that can be mounted on a building with BIM programs. As for problems that arose after the trial application of the prepared template, some CAD files could not be imported; also, while writing tables, the basis of calculation could not be made automatically. Regarding this, it is thought that functions of a BIM program and template need improvement.

Modeling of Friction Characteristic Between Concrete Pavement Slab and Subbase (콘크리트 포장 슬래브와 보조기층 간 마찰특성 모형화)

  • Lim, Jin-Sun;Son, Suk-Chul;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.211-218
    • /
    • 2010
  • Volume of concrete slab changes by temperature and moisture effects. At that time, tensile stress develops because the slab volume change is restrained by friction resistance between the slab and subbase, and then crack occurs occasionally. Accordingly, researchers have made efforts to figure out the friction characteristics between the slab and subbase by performing push-off tests. Lately, researches to analyze concrete pavement behavior by the friction characteristics have been performed by finite element method. In this study, The friction characteristics between the slab and subbase were investigated based on the friction test results for lean concrete, aggregate, and asphalt subase widely used in Korean concrete pavements. The energy method bilinearizing relation between nonlinear friction resistance and displacement were suggested. The friction test was modeled by 3-D finite element program, ABAQUS, and the model was verified by comparing the analyzed results to the test results. The bilinear model developed by the energy method was validated by comparing analysis results obtained by using the nonlinear and bilinear friction resistance displacement relation as input data. A typical Korean concrete pavement was modeled by ABAQUS and EverFE and analyzed results were compared to evaluate applicability of the bilinear model.

Evaluation of the Relationship between Geogrid Rib Size and Particle Size Distribution of Ballast Materials using Discrete Element Method (개별요소해석법을 이용한 지오그리드 격자 크기와 도상자갈재료 입도분포 상관관계 평가)

  • Pi, Ji-Hyun;Oh, Jeongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.143-149
    • /
    • 2016
  • This study evaluated the shear behavior of geogrid reinforced ballast material using a large scale direct shear test and discrete element method (DEM) based on PFC 3D program. The direct shear test was conducted on ballast materials that have different particle size distributions. Whereas the test results revealed that the shear strength generally increased with the larger particle size of ballast material without geogrid reinforcement, the shear behavior of ballast material was found to change pertaining to the relationship between particle size distribution and geogrid rib size. Generally, it is deemed the effectiveness of reinforcement can be achieved when the rib size is two times greater than average particle size. A numerical analysis based on DEM was conducted to verify the test results. The geogrid modeling was successfully completed by calibration process along with sensitivity analysis to have actual tensile strength provided by manufacturer. With a given geogrid model, the parametric evaluation was further carried out to examine the interactive behavior between geogrid and ballast material. Consequently, it was found that the effectiveness zone of geogrid reinforcement generated within a specific depth.

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.

The Virtual Factory Layout Simulation System using Legacy Data within Mixed Reality Environment (혼합현실 환경에서 레가시 데이터를 활용하는 가상 공정배치 시뮬레이션 시스템)

  • Lee, Jong-Hwan;Shin, Su-Chul;Han, Soon-Hung
    • The KIPS Transactions:PartA
    • /
    • v.16A no.6
    • /
    • pp.427-436
    • /
    • 2009
  • Digital virtual manufacturing is a technology that aims for the rapid development of products and the verification of production-process in ways that are more efficient by integrating digital models within the entire manufacturing process. These digital models utilize various information technologies, such as 3D CAD and simulations. Mixed reality, which represents graphical objects for only needed parts against real scene, can bring a more enriched sense of reality to an existing virtual manufacturing system that is in a pure virtual environment, and it can reduce the time and money needed for modeling the environment. This paper suggests a method for planning virtual factory layouts based on mixed reality using legacy datathat are already constructed in the real field. To do this, we developed the method to acquire simulation data from legacy data and process this acquired data for visualization based on mixed reality. And then we construct display system based on mixed reality, which can simulate virtual factory layout with processed data. Developed system can reduce errors related with factory layout by verifying the location and application of equipments in advance before arrangement of real ones at the practical job site.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

Erosion and Sedimentation Monitoring of Coastal Region using Time Series UAV Image (시계열 UAV 영상을 활용한 연안지역 침식·퇴적 변화 모니터링)

  • CHO, Gi-Sung;HYUN, Jae-Hyeok;LEE, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In order to promote efficient coastal management, it is important to continuously monitor the characteristics of the terrain, which are changed by various factors. In this study, time series UAV images were taken of Gyeokpo beach. And the standard deviation of ±11cm(X), ±10cm(Y), and ±15cm(Z) was obtained as a result of comparing with the VRS measurement performance for UAV position accuracy evaluation. Therefore, it was confirmed that the tolerance of the digital map work rule was satisfied. In addition, as a result of monitoring the erosion and sedimentation changes using the DSM(digital surface model) constructed through UAV images, an average of 0.01 m deposition occurred between June 2018 and December 2018, and in December 2018 and June 2019. It was analyzed that 0.03m of erosion occurred. Therefore, 0.02m of erosion occurred between June 2018 and June 2019. From the topographical change analysis results, the area of erosion and sediment height was analyzed, and the area of erosion and sedimentation was widely distributed in the ±0.5m section. If we continuously monitor the topographical changes in the coastal regions by using the 3D terrain modeling results using the time series UAV images presented in this study, we can support the coastal management tasks such as supplement or dredging of sand.

Simulation of Water Quality Changes in the Saemangeum Reservoir Induced by Dike Completion (방조제 완공에 따른 호내부 수질변화 모의)

  • Suh, Seung-Won;Lee, Hwa-Young;Yoo, Sang-Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.258-271
    • /
    • 2010
  • In order to figure out hydrodynamic and water quality changes after completion of dike construction of the Saemangeum, which behaves as a semi-enclosed estuarine lake, numerical simulations based on fine grid structure by using EFDC were intensively carried out. In this study some limitations of precedent study has been improved and gate operation were considered. Also 3 phases such as air-water-sediment interaction modeling was considered. It is clear that inner mixing of the Saemangeum is dominated by Mankyeong and Dongjin riverine discharges rather than the gate opening influence through the Lagrangian particle tracking simulations. Vertical DO structure after the dike completion shows steep gradient especially at Dongjin river estuary due to lessen of outer sea water exchange. Increasing SOD at stagnantly changed man-made reservoir might cause oxygen deficiency and accelerating degradation of water quality. According to TSI evaluation test representing eutrophication status, it shows high possibility of eutrophication along Mankyeong waterway in spite of dike completion, while the index is getting high after final closing along Dongjin waterway. Numerical tests with gate operations show significant differences in water quality. Thus it should be noted that proper gate operation plays a major role in preserving target water quality and management for inner development plan.

An Evaluation of Energy Quality for Distributed Powersystem (분산형 발전설비 병열운전 에너지 품질평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yoon, Gi-Gab;Rhim, Sang-Kyu;Choi, In-Kyu
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • As environmental friendly energy system, distributed micro gasturbine is focused on new energy source for overcoming brand new construction area of power generation. This distributed micro gasturbine system has the powerful characteristics as belows; 1) environmental friendly features NOx < 9 ppm, noise < 65 db 2) various fuel flexbility which is used such as natural gas, diesel, low calory new & renewable fuel, kerosene. 3) high specific output power based on small area and is avilable for very easy and compact installation. There are many new installation sites in USA and Japan from 1998. On the other hand the exhisting large power system was constructued by the sea side, this compact power system is now installed by enduser in downtown area and supplying combined heat & power, has the various apllication on-site power generation. In recently, there is the very important issue for new & reliablbe energy development and spreading out. This paper represent as belows for important system characteristics; 1) grid connection modeling 2) system operation characteristics 3) on-site operation result and evaluation output of power quality analysis.

The Influence of Suction Foundation Models for Offshore Wind Turbine (해상풍력발전 석션기초의 강성산정 방법에 따른 영향 분석)

  • Jang, Hwa Sub;Nam, Hyun Woo;Kwak, Yeon Min;Yoon, Se Woong;Kim, Ho Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.339-344
    • /
    • 2015
  • Suction piles have been widely used as foundations and anchor systems in offshore industry, and recently, it have been tried to be used as foundations for offshore wind turbines. Many researches have shown that stiffness of a foundation could effect dynamic responses of a offshore wind turbine so that appropriate modeling application of wind turbine foundations is recommended. In this paper, we calculate a stiffness matrix of a suction foundation through 3D FEM analysis and compare the results with the ones calculated by conventional formula for estimating stiffness of shallow foundations. And then we carry out integrated load analysis for the evaluation of dynamic responses and natural frequencies of the structure using the calculated stiffness matrix. The results shows that the effect of load in the mudline is not large, but in the case of assuming the foundation as a fixed support, the natural frequency is over-estimated up to 10%. Therefore, considering stiffness of foundations is recommended when you evaluate the natural frequencies of wind turbine structures.