• Title/Summary/Keyword: 3-D flow analysis

Search Result 1,514, Processing Time 0.03 seconds

Precision Injection Molding Analysis of Plastic Part with Rectangular Micro-Holes (미세 사각홀을 갖는 플라스틱 부품의 정밀사출성형해석)

  • Lee S. H.;Jung T. S.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.436-441
    • /
    • 2005
  • In this study, precision injection molding analysis for BGA connector fabrication was performed. A BGA connector model with rectangular micro-holes were introduced to investigate the effect of mirco patterns on the injection molding process. Dual domain(2.5D) mesh and full 3D mesh for BGA connector model were prepared to perform precision injection molding analysis. To verify the Present analysis, experiments of injection molding were performed based on the results of the analysis. It was shown that the type of mesh has a significant effect on the flow pattern of BGA connector

  • PDF

Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Flow-induced Vibration(FIV) Analysis of a 3D Axial Compressor Blade (3차원 축류압축기 블레이드의 유체유발진동 해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yang, Guo Wei;Jung, Kyu-Kang;Kim, Kyung-Hee;Min, Dae-Gee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.551-559
    • /
    • 2009
  • In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\epsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

Steam Turbine Rotating Blade Design Using Quasi-3 dimensional Flow Analysis (준 3차원 유동해석을 통한 증기 터빈의 회전익 설계)

  • Cho, S.H.;Kim, Y.S.;Kwon, G.B.;Im, H.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • A rotating blade of steam turbines is designed using blade design system. To minimize the design time. quasi three dimensional flow analysis code is adopted to calculate blade section. The blade section lies on a streamline determined by previous steam turbine design procedures. The blade design system makes a transform of streamline coordinates, (m, r$\theta$), to (m', $\theta$) coordinates and all design procedure except 3 dimensional stack-up is performed in the coordinates. Each designed blade section is stacked-up and whole 3 dimensional blade can be modified by correcting 2D section, repeatly. The full 3D numerial analysis for the one stage including designed rotating blade will be performed later

  • PDF

Numerical Analysis of Axial-Flow Cyclone Separator for Subway Station HVAC System Pre-Filter

  • Kim, Myung-Joon;Kim, Ho-Joong;Kwon, Soon-Bark;Kim, Se-Young;Kim, Jin-Kwan;Shin, Chang-Hun;Bae, Sung-Joon;Hwang, Sun-Ho;Kim, Tae-Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.3
    • /
    • pp.94-99
    • /
    • 2009
  • In the Korean subway station, three types of pre-filters, which include auto filter, electrostatic precipitator (ESP) and auto cleaning demister, are widely used. However, these devices have some problems such as the difficulty of maintenance and high operating cost. In this study, axial-flow cyclone separator was employed as a pre-filter inside a heating, ventilation, and air conditioning (HVAC) system. 3-dimensional computational fluid dynamics (CFD) analysis was performed on a single unit axial-flow cyclone and coupled unit axial-flow cyclone. Calculated and measured pressure drop of the designed axial-flow cyclone were found be comparable to other types of pre-filters and the observed cut-off diameter was less than 10 micron. Considering lower operating and maintenance cost, axial-flow cyclone was proved to be a better solution as a pre-filter.

A Study of Supersonic Flow Around Lateral Jet Controlled Missile (측 추력 제어 미사일 주위의 초음속 유동현상 연구)

  • Min Byung-Young;Lee Jae-Woo;Byun Yung-Hwan;Hyun Jae-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.28-34
    • /
    • 2002
  • A computational study of supersonic flow around lateral jet controlled missile has been performed. For this study, three dimensional Navier-Stokes code(AADL3D) has been developed. Spalart-Allmaras one equation turbulence model has been implemented on the AADL3D code for relatively rapid computational time. For the validation of developed code, AADL3D, pressure distributions on an ogive-cylinder body has been compared with experimental data. Also, the shock structure of sonic jet on the flat plate in the supersonic flow field has been compared with experimental flow visualization result to see the analysis capability of freestream-jet interaction case. A case study has been performed through comparing the normal force coefficient and the moment coefficient of missile body for several jet flow conditions. Current results will be used to the optimum design of a lateral jet controlled missile.

  • PDF

Basic Study on the Spatial Structure Analysis of the Evaporative Diesel Spray (증발디젤분무의 공간적 구조해석에 관한 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study is to analyze heterogeneous distribution of branch-like structure at downstream region of inner spray. The previous many studies about diesel spray structure have yet stayed in the analysis of 2-D structure, and there are very few of informations which are concerned with 3-D analysis of the structure. The heterogeneous distribution of droplets in inner spray affects the mixture formation of diesel spray, and also the combustion characteristics of the diesel engines. Therefore, in order to investigate 3-D structure of evaporative spray the laser beam of 2-D plane was used in this study. Liquid fuel was injected from a single-hole nozzle (l/d=5) into a constant-volume vessel under high pressure and temperature in order to visualize the spray phenomena. The incident laser beam was offset on the central axis. From the images analysis taken by offset of laser beam, we examine formation mechanism of heterogeneous distribution by vortex flow at the downstream of the diesel spray. As the experimental results, the branch-like structure formed heterogeneous distribution of the droplets consists of high concentration of vapor phase in the periphery of droplets and spray tip of branch-like structure. Also the 3-D spatial structure of the evaporative diesel spray can be verified by images obtained from 2-D measurement methods.

A Unified 3D Numerical Analysis of a Model Scramjet Engine with a Cavity Flame-Holder and Two Intake Side Walls (공동형 보염기를 갖는 모델 스크램제트 엔진의 흡입구 측면효과를 고려한 3차원 통합 유동해석)

  • Yeom, Hyo-Won;Kim, Sung-Jin;Sung, Hong-Gye;Kang, Sang-Hoon;Yang, Soo-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • To identify the detailed 3D flow characteristics of a model scramjet engine, a unified 3D numerical analysis was performed. The numerical domain of concern includes the entire flow path of the model scramjet engine extending from the intake to the nozzle exhaust. Turbulent models($k-{\omega}$ SST and low Reynolds number k-e with Sarkar model) were applied with comparison of experiment result. Intake side wall's effect on flow characteristics was analyzed in view points of flow quality at inlet duct and near the flame holder as well. The code is paralleled with multi-block feature using MPI(Massage Passing Interface) library to speed up the 3D calculation.

  • PDF

Analysis of Saline Wedge Using 3D Numerical Model (3차원 수치모형을 이용한 정상염수쐐기현상 해석)

  • Lee, Kyung-Su;Kwak, Sung-Hyun;Lyu, Si-Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.571-575
    • /
    • 2012
  • 하구역에서의 대표적인 수리특성인 염수쐐기현상에 대한 정확한 이해는 하구역 수질 및 환경관리 측면에서 필수적인 사항이다. 본 연구에서는 정상염수쐐기 경계층 거동에 대한 실험적 연구결과와 3차원 전산유체역학 프로그램인 FLOW-3D를 이용한 수치모의 결과를 비교해봄으로써 염수쐐기현상에 대한 3차원 수치모형의 적용성을 살펴보았다. FLOW-3D를 이용하여 실험장치의 수로구간을 구성하고 경계조건으로 염수의 수위와 담수의 유량을 입력하였으며 밀도차를 두어 이층류가 발생하도록 모의하였다. 모의결과를 통해 시간평균농도와 표준편차를 무차원화하여 단면별 연직분포를 알아보고 각 단면을 중첩하여 경계층의 거동을 살펴보았으며 염수쐐기길이와 염수심을 무차원화하여 밀도프루드수의 변화에 따른 염수쐐기형상을 살펴보았다. 그리고 각 결과를 기 수행된 실험결과와 비교해 보았다.

  • PDF

On Comparison between 2-D and 3-D Numerical Models used to Analyze the Wave Field around a Permeable Submerged Breakwater (투과성잠제 주변의 파동장 해석을 위한 2-D 및 3-D 수치계산의 비교)

  • Hur, Dong-Soo;Choi, Dong-Seok;Lee, Woo-Dong;Yeom, Gyeong-Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.363-371
    • /
    • 2008
  • The aim of this study is to compare the numerical results obtained by 2-D and 3-D models which are used to examine the wave field around a permeable submerged breakwater. At first, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar and turbulent resistance terms and determine the eddy viscosity with LES turbulent model, is used and validated by comparing with existing experimental data. And then, the numerical test on the wave field around a permeable submerged breakwater is performed. It is revealed from the numerical results that, at the onshore side of the submerged breakwater, the wave height by 2-D analysis is higher than that by 3-D analysis. Also, the time-averaged mean flow around a submerged breakwater is discussed in detail.