• Title/Summary/Keyword: 3-D feature extraction

Search Result 202, Processing Time 0.025 seconds

Target Object Image Extraction from 3D Space using Stereo Cameras

  • Yoo, Chae-Gon;Jung, Chang-Sung;Hwang, Chi-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1678-1680
    • /
    • 2002
  • Stereo matching technique is used in many practical fields like satellite image analysis and computer vision. In this paper, we suggest a method to extract a target object image from a complicated background. For example, human face image can be extracted from random background. This method can be applied to computer vision such as security system, dressing simulation by use of extracted human face, 3D modeling, and security system. Many researches about stereo matching have been performed. Conventional approaches can be categorized into area-based and feature-based method. In this paper, we start from area-based method and apply area tracking using scanning window. Coarse depth information is used for area merging process using area searching data. Finally, we produce a target object image.

  • PDF

A study on correspondence problem of stereo vision system using self-organized neural network

  • Cho, Y.B.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.170-179
    • /
    • 1993
  • In this study, self-organized neural network is used to solve the vorrespondence problem of the axial stereo image. Edge points are extracted from a pair of stereo images and then the edge points of rear image are assined to the output nodes of neural network. In the matching process, the two input nodes of neural networks are supplied with the coordi- nates of the edge point selected randomly from the front image. This input data activate optimal output node and its neighbor nodes whose coordinates are thought to be correspondence point for the present input data, and then their weights are allowed to updated. After several iterations of updating, the weights whose coordinates represent rear edge point are converged to the coordinates of the correspondence points in the front image. Because of the feature map properties of self-organized neural network, noise-free and smoothed depth data can be achieved.

  • PDF

Feature-based Matching Algorithms for Registration between LiDAR Point Cloud Intensity Data Acquired from MMS and Image Data from UAV (MMS로부터 취득된 LiDAR 점군데이터의 반사강도 영상과 UAV 영상의 정합을 위한 특징점 기반 매칭 기법 연구)

  • Choi, Yoonjo;Farkoushi, Mohammad Gholami;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.453-464
    • /
    • 2019
  • Recently, as the demand for 3D geospatial information increases, the importance of rapid and accurate data construction has increased. Although many studies have been conducted to register UAV (Unmanned Aerial Vehicle) imagery based on LiDAR (Light Detection and Ranging) data, which is capable of precise 3D data construction, studies using LiDAR data embedded in MMS (Mobile Mapping System) are insufficient. Therefore, this study compared and analyzed 9 matching algorithms based on feature points for registering reflectance image converted from LiDAR point cloud intensity data acquired from MMS with image data from UAV. Our results indicated that when the SIFT (Scale Invariant Feature Transform) algorithm was applied, it was able to stable secure a high matching accuracy, and it was confirmed that sufficient conjugate points were extracted even in various road environments. For the registration accuracy analysis, the SIFT algorithm was able to secure the accuracy at about 10 pixels except the case when the overlapping area is low and the same pattern is repeated. This is a reasonable result considering that the distortion of the UAV altitude is included at the time of UAV image capturing. Therefore, the results of this study are expected to be used as a basic research for 3D registration of LiDAR point cloud intensity data and UAV imagery.

Virtual core point detection and ROI extraction for finger vein recognition (지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The finger vein recognition technology is a method to acquire a finger vein image by illuminating infrared light to the finger and to authenticate a person through processes such as feature extraction and matching. In order to recognize a finger vein, a 2D mask-based two-dimensional convolution method can be used to detect a finger edge but it takes too much computation time when it is applied to a low cost micro-processor or micro-controller. To solve this problem and improve the recognition rate, this study proposed an extraction method for the region of interest based on virtual core points and moving average filtering based on the threshold and absolute value of difference between pixels without using 2D convolution and 2D masks. To evaluate the performance of the proposed method, 600 finger vein images were used to compare the edge extraction speed and accuracy of ROI extraction between the proposed method and existing methods. The comparison result showed that a processing speed of the proposed method was at least twice faster than those of the existing methods and the accuracy of ROI extraction was 6% higher than those of the existing methods. From the results, the proposed method is expected to have high processing speed and high recognition rate when it is applied to inexpensive microprocessors.

Detecting Complex 3D Human Motions with Body Model Low-Rank Representation for Real-Time Smart Activity Monitoring System

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Dong-Seong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1189-1204
    • /
    • 2018
  • Detecting and capturing 3D human structures from the intensity-based image sequences is an inherently arguable problem, which attracted attention of several researchers especially in real-time activity recognition (Real-AR). These Real-AR systems have been significantly enhanced by using depth intensity sensors that gives maximum information, in spite of the fact that conventional Real-AR systems are using RGB video sensors. This study proposed a depth-based routine-logging Real-AR system to identify the daily human activity routines and to make these surroundings an intelligent living space. Our real-time routine-logging Real-AR system is categorized into two categories. The data collection with the use of a depth camera, feature extraction based on joint information and training/recognition of each activity. In-addition, the recognition mechanism locates, and pinpoints the learned activities and induces routine-logs. The evaluation applied on the depth datasets (self-annotated and MSRAction3D datasets) demonstrated that proposed system can achieve better recognition rates and robust as compare to state-of-the-art methods. Our Real-AR should be feasibly accessible and permanently used in behavior monitoring applications, humanoid-robot systems and e-medical therapy systems.

Support Vector Machine Based Phoneme Segmentation for Lip Synch Application

  • Lee, Kun-Young;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.11 no.2
    • /
    • pp.193-210
    • /
    • 2004
  • In this paper, we develop a real time lip-synch system that activates 2-D avatar's lip motion in synch with an incoming speech utterance. To realize the 'real time' operation of the system, we contain the processing time by invoking merge and split procedures performing coarse-to-fine phoneme classification. At each stage of phoneme classification, we apply the support vector machine (SVM) to reduce the computational load while retraining the desired accuracy. The coarse-to-fine phoneme classification is accomplished via two stages of feature extraction: first, each speech frame is acoustically analyzed for 3 classes of lip opening using Mel Frequency Cepstral Coefficients (MFCC) as a feature; secondly, each frame is further refined in classification for detailed lip shape using formant information. We implemented the system with 2-D lip animation that shows the effectiveness of the proposed two-stage procedure in accomplishing a real-time lip-synch task. It was observed that the method of using phoneme merging and SVM achieved about twice faster speed in recognition than the method employing the Hidden Markov Model (HMM). A typical latency time per a single frame observed for our method was in the order of 18.22 milliseconds while an HMM method applied under identical conditions resulted about 30.67 milliseconds.

  • PDF

Comparison Analysis of Four Face Swapping Models for Interactive Media Platform COX (인터랙티브 미디어 플랫폼 콕스에 제공될 4가지 얼굴 변형 기술의 비교분석)

  • Jeon, Ho-Beom;Ko, Hyun-kwan;Lee, Seon-Gyeong;Song, Bok-Deuk;Kim, Chae-Kyu;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.535-546
    • /
    • 2019
  • Recently, there have been a lot of researches on the whole face replacement system, but it is not easy to obtain stable results due to various attitudes, angles and facial diversity. To produce a natural synthesis result when replacing the face shown in the video image, technologies such as face area detection, feature extraction, face alignment, face area segmentation, 3D attitude adjustment and facial transposition should all operate at a precise level. And each technology must be able to be interdependently combined. The results of our analysis show that the difficulty of implementing the technology and contribution to the system in facial replacement technology has increased in facial feature point extraction and facial alignment technology. On the other hand, the difficulty of the facial transposition technique and the three-dimensional posture adjustment technique were low, but showed the need for development. In this paper, we propose four facial replacement models such as 2-D Faceswap, OpenPose, Deekfake, and Cycle GAN, which are suitable for the Cox platform. These models have the following features; i.e. these models include a suitable model for front face pose image conversion, face pose image with active body movement, and face movement with right and left side by 15 degrees, Generative Adversarial Network.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

  • Madusanka, Nuwan;Zaben, Naim Al;Shidaifat, Alaaddin Al;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered according to user's preference.

Automatic 3D data extraction method of fashion image with mannequin using watershed and U-net (워터쉐드와 U-net을 이용한 마네킹 패션 이미지의 자동 3D 데이터 추출 방법)

  • Youngmin Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.825-834
    • /
    • 2023
  • The demands of people who purchase fashion products on Internet shopping are gradually increasing, and attempts are being made to provide user-friendly images with 3D contents and web 3D software instead of pictures and videos of products provided. As a reason for this issue, which has emerged as the most important aspect in the fashion web shopping industry, complaints that the product is different when the product is received and the image at the time of purchase has been heightened. As a way to solve this problem, various image processing technologies have been introduced, but there is a limit to the quality of 2D images. In this study, we proposed an automatic conversion technology that converts 2D images into 3D and grafts them to web 3D technology that allows customers to identify products in various locations and reduces the cost and calculation time required for conversion. We developed a system that shoots a mannequin by placing it on a rotating turntable using only 8 cameras. In order to extract only the clothing part from the image taken by this system, markers are removed using U-net, and an algorithm that extracts only the clothing area by identifying the color feature information of the background area and mannequin area is proposed. Using this algorithm, the time taken to extract only the clothes area after taking an image is 2.25 seconds per image, and it takes a total of 144 seconds (2 minutes and 4 seconds) when taking 64 images of one piece of clothing. It can extract 3D objects with very good performance compared to the system.

Vision-based Camera Localization using DEM and Mountain Image (DEM과 산영상을 이용한 비전기반 카메라 위치인식)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.177-186
    • /
    • 2005
  • In this Paper. we propose vision-based camera localization technique using 3D information which is created by mapping of DEM and mountain image. Typically, image features for localization have drawbacks, it is variable to camera viewpoint and after time information quantify increases . In this paper, we extract invariance features of geometry which is irrelevant to camera viewpoint and estimate camera extrinsic Parameter through accurate corresponding Points matching by Proposed similarity evaluation function and Graham search method we also propose 3D information creation method by using graphic theory and visual clues, The Proposed method has the three following stages; point features invariance vector extraction, 3D information creation, camera extrinsic Parameter estimation. In the experiments, we compare and analyse the proposed method with existing methods to demonstrate the superiority of the proposed methods.

  • PDF