• Title/Summary/Keyword: 3-D display system

Search Result 602, Processing Time 0.026 seconds

Design and Implementation of an Approximate Surface Lens Array System based on OpenCL (OpenCL 기반 근사곡면 렌즈어레이 시스템의 설계 및 구현)

  • Kim, Do-Hyeong;Song, Min-Ho;Jung, Ji-Sung;Kwon, Ki-Chul;Kim, Nam;Kim, Kyung-Ah;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.1-9
    • /
    • 2014
  • Generally, integral image used for autostereoscopic 3d display is generated for flat lens array, but flat lens array cannot provide a wide range of view for generated integral image because of narrow range of view. To make up for this flat lens array's weak point, curved lens array has been proposed, and due to technical and cost problem, approximate surface lens array composed of several flat lens array is used instead of ideal curved lens array. In this paper, we constructed an approximate surface lens array arranged for $20{\times}8$ square flat lens in 100mm radius sphere, and we could get about twice angle of view compared to flat lens array. Specially, unlike existing researches which manually generate integral image, we propose an OpenCL GPU parallel process algorithm for generating real-time integral image. As a result, we could get 12-20 frame/sec speed about various 3D volume data from $15{\times}15$ approximate surface lens array.

Implementation of Stereoscopic 3D Video Player System Having Less Visual Fatigue and Its Computational Complexity Analysis for Real-Time Processing (시청피로 저감형 S3D 영상 재생 시스템 구현 및 실시간 처리를 위한 알고리즘 연산량 분석)

  • Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2865-2874
    • /
    • 2013
  • Recently, most of movies top-ranked in the box office are screening in Stereoscopic 3D, and the world's leading electronics companies such as Samsung and LG are getting the hots for 3DTV sales. However, each person has different binocular disparity and different viewing distance, and thus he or she feels the severe visual fatigue and headaches if he or she is watching 3D content with the same binocular disparity, which is very different from things he or she feels in the real world. To solve this problem, this paper proposes and implement a 3D rendering system that correct the disparity of 3D content by reflecting binocular distance and viewing distance. Then, the computational complexity is analyzed. Optical-flow and Warping algorithms turn out to consume 732 seconds and 5.7 seconds per frame, respectively. Therefore, a dedicated chip-set for both blocks is strongly required for real-time HD 3D display.

Three-Dimensional Shape Measurement of a Specular Object by LED Array Reflection (LED Array의 반사영상에 의한 경면체의 3차원 형상 측정)

  • Kim, Jee Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.1
    • /
    • pp.41-46
    • /
    • 2016
  • An optical method to measure the three-dimensional (3D) shape of a surface with specular reflection is proposed. The proposed method is based on the analysis of the geometric path of the light from a point source, and the relative displacements of points in the reflection image. The 3D shape of a concave mirror is shown to be determined approximately via experiments, where the vision system consists of LED array illumination, a half-mirror, and an imaging sensor.

Unity3D-Based Flood Simulation Visualization Web System for Efficient Disaster Management (효과적인 재난관리를 위한 Unity3D 기반 홍수 시뮬레이션 가시화 웹시스템)

  • GANG, Su-Myung;RYU, Dong-Ha;CHOI, Yeong-Cheol;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.98-112
    • /
    • 2017
  • Recently, various research has been conducted on the use of a game engine instead of a commercial geographic information system (GIS) engine for the development of 3D GIS. The advantage of the 3D game engine is that it allows developers to develop various modules according to their abilities. In particular, in the area of disasters, a wide range of alternatives for prevention as well as prediction can be presented when new analyses are attempted by combining geographic information and disaster-related information. Furthermore, 3D analysis can be an important factor in analyzing the phenomena occurring in the real 3D world because of the nature of disasters. Therefore, in this study, we tried to develop a visualization module for flood disaster information through a 3D game engine by considering the solutions for cost and manpower problems and the degree of freedom of development. Raw flood data was mapped onto spatial information and interpolation was performed for the natural display of the mapped flood information. Furthermore, we developed a module that intuitively shows dangerous areas to users by generating cumulative information in order to display multidimensional information based on this information. The results of this study are expected to enable various flood information analyses as well as quick response and countermeasures to floods.

Rapid Implementation of 3D Facial Reconstruction from a Single Image on an Android Mobile Device

  • Truong, Phuc Huu;Park, Chang-Woo;Lee, Minsik;Choi, Sang-Il;Ji, Sang-Hoon;Jeong, Gu-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1690-1710
    • /
    • 2014
  • In this paper, we propose the rapid implementation of a 3-dimensional (3D) facial reconstruction from a single frontal face image and introduce a design for its application on a mobile device. The proposed system can effectively reconstruct human faces in 3D using an approach robust to lighting conditions, and a fast method based on a Canonical Correlation Analysis (CCA) algorithm to estimate the depth. The reconstruction system is built by first creating 3D facial mapping from a personal identity vector of a face image. This mapping is then applied to real-world images captured with a built-in camera on a mobile device to form the corresponding 3D depth information. Finally, the facial texture from the face image is extracted and added to the reconstruction results. Experiments with an Android phone show that the implementation of this system as an Android application performs well. The advantage of the proposed method is an easy 3D reconstruction of almost all facial images captured in the real world with a fast computation. This has been clearly demonstrated in the Android application, which requires only a short time to reconstruct the 3D depth map.

Synthesis and Characterization of 1,4-Diimine Complexes of 1,2,3,4,5-Pentamethylcyclopentadienylrhodium and iridium

  • Paek, Cheol-Ki;Ko, Jae-Jung;Uhm, Jae-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.980-984
    • /
    • 1994
  • Monomeric rhodium and iridium diimine complexes $Cp^*M(HNRNH)(Cp^*$ = 1,2,3,4,5-pentamethylcyclopentadienyl : (M=lr; R=o-$C_6H_4 (1a), 4,5-(CH_3)_2-C_6H_2-1,2 (1b), 4,5-(Cl)_2-C_6H_2-1,2$ (1c), NCC=CCN-1,2 (1d): M=Rh; R=NCC=CCN-1,2 (1e)) have been synthesized from $[CP^*MCl_2]_2$ and 2 equiv. of diamine in the presence of $NEt_3$. The Crystal structure of 1a was determined by X-ray diffraction method : 1a was crystallized in the monoclinic system, space group $P2_{1/c}$, with lattice constants a=9.543 (1) ${\AA}$, b=16.286 (1) ${\AA}$, c=10.068 (1) ${\AA}$ and ${\beta}$=99.25 (1), with Z= 4. Least-squares refinement of the structure led to R factor of 0.049. The coordination sphere of rhodium and iridium can be described as a 2-legged piano-stool. All complexes are highly colored. Electrochemical studies show that 1d and 1e display quasi-reversible reduction and 1a-1c display irreversible reductions, suggesting that the acceptor orbital might be localized on the diimine ring.

A Hierarchical User Interface for Large 3D Meshes in Mobile Systems (모바일 시스템의 대용량 3차원 메쉬를 위한 계층적 사용자 인터페이스)

  • Park, Jiro;Lee, Haeyoung
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • This paper introduces a user interface for large 3D meshes in mobile systems, which have limited memory, screen size and battery power. A large 3D mesh is divided into partitions and simplified in multi-resolutions so a large file is transformed into a number of small data files and saved in a PC server. Only selected small files specified by the user are hierarchically transmitted to the mobile system for 3D browsing and rendering. A 3D preview in a pop-up shows a simplified mesh in the lowest resolution. The next step displays simplified meshes whose resolutions are automatically controlled by the user interactions. The last step is to render a set of detailed original partitions in a selected range. As a result, while minimizing using mobile system resources, our interface enables us to browse and display 3D meshes in mobile systems through real-time interactions. A mobile 3D viewer and a 3D app are also presented to show the utility of the proposed user interface.

3-Dimensional Micro Solder Ball Inspection Using LED Reflection Image

  • Kim, Jee Hong
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.39-45
    • /
    • 2019
  • This paper presents an optical technique for the three-dimensional (3D) shape inspection of micro solder balls used in ball-grid array (BGA) packaging. The proposed technique uses an optical source composed of spatially arranged light-emitting diodes (LEDs) and the results are derived based on the specular reflection characteristics of the micro solder balls for BGA A vision system comprising a camera and LEDs is designed to capture the reflected images of multiple solder balls arranged arbitrarily on a tray and the locations of the LED point-light-source reflections in each ball are determined via image processing, for shape inspection. The proposed methodology aims to determine the presence of defects in 3D BGA shape using the statistical information of the relative positions of multiple BGA balls, which are included in the image. The presence of the BGA balls with large deviations in relative position imply the inconsistencies in their shape. Experiments were conducted to verify that the proposed method could be applied to inspection without sophisticated mechanism and productivity problem.

Animation System for Crowd Behavior Using Information of 3D Models (3차원 모델 정보를 이용한 군집행동 애니메이션 시스템)

  • Cho, Seung-il;Ryu, nam Hoon;Kim, Jong-chan;Kim, Jong-il;Kim, Cheeyong;Kim, Eung-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.131-134
    • /
    • 2009
  • The development of computer graphics leads to high value-added products, such as film, game contents, 3D animation. In realistic animation, it is impossible and inefficient to produce the movement of each objects as handwork to display the various behaviors of a lot of characters. So we need the techniques of the crowd animation which presents the movement of objects realistically and efficiently by calculating automatically. In this paper, we designed a modeler which generates the attitudes of objects in crowd behavior animation using information of 3D models. We developed an animation system for crowd behavior which was applied for animation, VR, or games.

  • PDF

Analysis of Applying the Mobile BIM Application based on Cloud Computing (클라우드 컴퓨팅 기반의 모바일 BIM 애플리케이션 적용성 분석)

  • Jun, Jin-Woo;Lee, Sang-Heon;Eom, Shin-Jo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.342-352
    • /
    • 2012
  • As a futuristic construction model, building information model (BIM) based project management system (PMIS) and mobile BIM simulator apps have been showing visible sign. However, researches on the BIM based 3D simulator using mobile device are hard to find result from limitation of mobile device (slow speed at huge 3D file, display size, and etc.) and undefined standard of business processes. Therefore, this research aims at studying application of mobile BIM apps based on cloud computing. Total 8 BIM cloud apps were selected and analyzed in the 5 application feasibility characteristics (speed, view, inquiry, markup, and usability). This research would be essential phase to construct BIM based mobile project management system using cloud computing in the future.