• Title/Summary/Keyword: 3-D cable stayed bridge

Search Result 37, Processing Time 0.019 seconds

Dynamic Response of 3-D Cable-Stayed Bridge Considering the Sway Vibrational Effect of Stays (케이블 횡진동을 고려한 3차원 사장교의 동적거동)

  • 성익현
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.36-45
    • /
    • 1999
  • The basic idea of cable-stayed girder bridges is the utilization of high strength cables to provide intermediate supports for the bridge girder so that the girder can span a much longer distance. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Techniques required for the static analysis of cable-stayed bridges has been developed by many researchers. However, little work has been done on the dynamic analysis of such structures. To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads. two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF

Investigation on mechanics performance of cable-stayed-suspension hybrid bridges

  • Zhang, Xin-Jun
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.533-542
    • /
    • 2007
  • The cable-stayed-suspension hybrid bridge is a cooperative system of the cable-stayed bridge and suspension bridge, and takes some advantages and also makes up some deficiencies of both the two bridge systems, and therefore becomes strong in spanning. By taking the cable-stayed-suspension hybrid bridge, suspension bridge and cable-stayed bridge with main span of 1400 m as examples, the mechanics performance including the static and dynamic characteristics, the aerostatic and aerodynamic stability etc is investigated by 3D nonlinear analysis. The results show that as compared to the suspension bridge and cable-stayed bridge, the cable-stayed-suspension hybrid bridge has greater structural stiffness, less internal forces and better wind stability, and is favorable to be used in super long-span bridges.

BIM System Development for Conceptual Design and Pre-Feasibility Study of Cable-Stayed Bridge (BIM 기반 사장교의 개념설계 및 예가분석 시스템 개발)

  • Chun, Kyoung-Sik;Park, Won-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7204-7210
    • /
    • 2015
  • This paper has developed the system for supporting the approximate construction cost and the quantity estimation based on 3D model information in the pre-project planning phase of 3-span continuous cable-bridge with 2-pylons. First of all, we'd analyzed the design information (structural design report, blueprint and quantity) of the existing cable-stayed bridges and derived the design variables of cable-stayed bridges. We developed the BIM wizard that generates a cable-stayed bridge model parametrically based on derived design variables. The principle material quantities of cable-stayed bridge are calculated directly from 3-dimensional bridge model built by using the BIM wizard. Then, we can estimate the construction cost in relation to its quantities and unit cost of cable-stayed bridge. In a result, we have established the system that the construction cost can be estimated more specific than the conventional method (construction estimates per meter or square meter). We hereby will be able to review various alternatives as soon as possible in bidding process.

Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm

  • ATMACA, Barbaros;DEDE, Tayfun;GRZYWINSKI, Maksym
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.853-862
    • /
    • 2020
  • In recent years, due to the many advantages cable-stayed bridges have often constructed in medium and long span. These advantages can be listed as an aesthetically pleasing appearance, economic and easy construction, etc. The main structural elements of cable-stayed bridges are listed as deck, pylon, cables and foundation. Perhaps one of the most vital and expensive of these structural elements is stay-cables. Stay-cables ensure the allowable displacement and distribution of bending moments along the bridge deck with prestressing force. Therefore the optimum design of the stay-cables and prestressing force are very important in achieving the performance expected from the cable-stayed bridges. This paper aims to obtain the stay-cables size and prestressing force optimization of the cable-stayed bridge. For this purpose, single pylon and fan type cable configuration Manavgat Cable-Stayed Bridge was selected as an example. The three dimensional (3D) finite element model (FEM) of the bridge was created with SAP2000. Analysis of the 3D FEM of the bridge was conducted under the different combined effects of the self-weight of the structural element, prestressing force of stay-cable and live load. Stay-cable stress and deck displacement were taken into account as constraints for the optimization problem. To optimize this existing bridge a metaheuristic algorithm named Jaya was used in the optimization process. 3D FEM of the selected bridge was repeatedly analyzed by using Open Applicable Programming Interface (OAPI) properties of SAP2000. To carry out the optimization process the developed program which integrates the Jaya algorithm and the required codes for calling SAP2000 is coded in MATLAB. At the end of the study, the total weight of the stay-cables was reduced more than 40% according to existing stay cables under loads taken into account.

Development of BIM-based bridge maintenance system for cable-stayed bridges

  • Shim, Chang-su;Kang, Hwirang;Dang, Ngoc Son;Lee, Deokkeun
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.697-708
    • /
    • 2017
  • Maintenance plays a critical role in the bridge industry, but actual practices show many limitations because of traditional, 2D-based information systems. It is necessary to develop a new generation of maintenance information management systems for more reliable decision making in bridge maintenance. Enhancing current work processes requires a BIM-based 3D digital model that can use information from the whole lifecycle of a project (design, construction, operation, and maintenance) through continuous exchanges and updates from each stakeholder. This study describes the development of a data scheme for maintenance of cable-stayed bridges. We implemented the proposed system for a cable-stayed bridge and discussed its effectiveness.

Analysis on Visual Preference of Bridge Landscapes of View Point Selection and Bridge Shape for Improvement of the Rural Landscape - A Case Study of the 'Baegya Bridge of Yeosu City in Jeollanam-do' (농어촌경관 향상을 위한 교량경관의 조망점 및 형태에 관한 경관선호도 분석 -전라남도 여수시 백야대교를 대상으로-)

  • Chun, Hyun-Jin;Lee, June;Jiang, Long;Kim, Sung-Kyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.18 no.3
    • /
    • pp.57-65
    • /
    • 2012
  • This research is focus on the analysis of bridge image and preference. In this study, 3 types of bridge with arch bridge, cable stayed bridge, and suspension bridge, 4 prospect points named A, B, C, and D will be simulated in one scene for final analysis of bridge image and preference.On prospect point A, higher evaluation is received among the arch bridge. In addition, for cable stayed bridge and suspension bridge, the Higher evaluation is received among the most at the arch bridge on prospect point B. At the on prospect point C, higher evaluation is received among the most cable stayed bridge and suspension bridge compared with arch bridge. At the on prospect point D, lower evaluation is received among the cable stayed bridge and suspension bridge compared with arch bridge. The highest average total preference is received for cable stayed bridge. And, The lowest average total preference is received for arch bridge. Cable stayed bridge is suitable for the Baegya Bridge than arch bridge in the Landscape point. In conclusion, the preference for one bridge is not the same at different prospect points through above research.

Construction stage analysis of three-dimensional cable-stayed bridges

  • Atmaca, Barbaros;Ates, Sevket
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.413-426
    • /
    • 2012
  • In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one $\ddot{e}$ shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

Wind-Resistant Safety Reviews of Cable-Stayed Bridge by Wind Tunnel Tests (풍동실험을 통한 사장교의 내풍 안전성 검토)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.637-644
    • /
    • 2020
  • Because suicide accidents sometimes were happened in grand bridges over rivers or sea water recently, it will be necessary that prevention measures be made preparation in advance from now on. Additional safety facilities must be needed in addition to existing safety facilities in such a way as this prevention measure. In order to make cable-stayed bridge safe on wind for additional safety facilities, main girder models with added safety facilities for wind-tunnel tests was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel test results. From the wind experiments, force coefficients of main girder with added safety facilities were assessed, and it is known that there are little possibility of galloping and rotation of steel main girder. Finally, from the wind resistant analyses, it was concluded that wind-resistant safety of cable-stayed bridge was secured on wind speed 60.6m/sec.

Static behaviors of self-anchored and partially earth-anchored long-span cable-stayed bridges

  • Xie, Xu;Yamaguchi, Hiroki;Nagai, Masatsugu
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.767-774
    • /
    • 1997
  • In this paper, three dimensional static behaviors of the self-anchored and partially earth-anchored cable-stayed bridges, with a span of 1400 meters, under wind loading are studied by using a 3D geometrical nonlinear analysis. In this analysis, the bridges both after completion and under construction are dealt with. The wind resistant characteristics of the both cable-stayed systems are made clear. In particular, the characteristics of the partially earth-anchored cable systems, which is expected to be a promising solution for extending the span of the cable-stayed systems further, is presented.

Mechanisms of thermally induced deflection of a long-span cable-stayed bridge

  • Zhou, Yi;Sun, Limin;Peng, Zhijian
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.505-522
    • /
    • 2015
  • Variation of temperature is a primary environmental factor that affects the behavior of structures. Therefore, understanding the mechanisms of normal temperature-induced variations of structural behavior would help in distinguishing them from anomalies. In this study, we used the structural health monitoring data of the Shanghai Yangtze River Bridge, a steel girder cable-stayed bridge, to investigate the mechanisms of thermally induced vertical deflection ($D_T$) at mid-span of such bridges. The $D_T$ results from a multisource combination of thermal expansion effects of the cable temperature ($T_{Cab}$), girder temperature ($T_{Gir}$), girder differential temperature ($T_{Dif}$), and tower temperature ($T_{Tow}$). It could be approximated by multiple linear superpositions under operational conditions. The sensitivities of $D_T$ of the Shanghai Yangtze River Bridge to the above temperatures were in the following order: $T_{Cab}$ > $T_{Gir}$ > $T_{Tow}$ > $T_{Dif}$. However, the direction of the effect of $T_{Cab}$ was observed to be opposite to that of the other three temperatures, and the magnitudes of the effects of $T_{Cab}$ and $T_{Gir}$ were found to be almost one order greater than those of $T_{Dif}$ and $T_{Tow}$. The mechanisms of the thermally induced vertical deflection variation at mid-span of a cable-stayed bridge as well as the analytical methodology adopted in this study could be applicable for other long-span cable-stayed bridges.