• Title/Summary/Keyword: 3-D Structure

Search Result 6,781, Processing Time 0.034 seconds

Study on Low Temperature Environmental Characteristics of Sandwich Core Made with 3D Printer (3D 프린터로 제작한 샌드위치 코어의 저온 환경 특성 연구)

  • Ahn, Ju-Hun;Choi, Ju-Hwan;Hong, Seung-Lae;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.18-25
    • /
    • 2019
  • Studies on the fabrication of UAV by using 3D printer have been actively carried out. However, research on structural load characteristics in low temperature environment is insufficient. In this study, a composite sandwich structure with ordinary orbs structure was proposed, and the load characteristics for temperature condition changes were analyzed. The ordinary orbs and honeycomb structures were fabricated by using a FDM type 3D printer. The bending load test was carried out at room temperature and low temperature condition. The low temperature condition was classified into four cases. Bending load tests were performed in a low temperature chamber to maintain the required temperature conditions. As a result of the test, it was confirmed that the proposed ordinary orbs structure had better load characteristics at low temperatures than the existing honeycomb structure.

Antecedents and Effects of R&D Concentration : An Analysis from the Perspective of the Structure-Conduct-Performance paradigm (연구개발(R&D)집중도의 결정요인 및 영향에 관한 연구 : S-C-P 패러다임 관점에서의 접근)

  • Cho, Young-Gon;Shin, Hyuk-Seung;Sul, Won-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.24-35
    • /
    • 2014
  • This paper examines, from the perspective of the structure-conduct-performance (S-C-P) paradigm, the structural factors that determine R&D concentration in industries. The results are as follows. First, an industry's R&D concentration is directly related to its market concentration, R&D intensity, capital intensity, and technological opportunities. In contrast, the higher an industry's performance, the more likely the diffusion of R&D investment is for firms belonging to that industry. Second, an industry's R&D concentration has a positive effect on its market concentration but a negative effect on its performance, suggesting that governments should adopt R&D policies that would induce more firms to invest in R&D instead of focusing only on a few firms to enhance industry performance.

Development of Smart Phone App. Contents for 3D Sign Language Education (3D 수화교육 스마트폰 앱콘텐츠 개발)

  • Jung, Young Kee
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.8-14
    • /
    • 2012
  • In this paper, we develope the smart phone App. contents of 3D sign language to widen the opportunity of the korean sign language education for the hearing-impaired and normal people. Especially, we propose the sign language conversion algorithm that automatically transform the structure of Korean phrases to the structure of the sign language. Also, we implement the 3D sign language animation DB using motion capture system and data glove for acquiring the natural motions. Finally, UNITY 3D engine is used for the realtime 3D rendering of sign language motion. We are distributing the proposed App. with 3D sign language DB of 1,300 words to the iPhone App. store and Android App. store.

  • PDF

A Design of Programmable Fragment Shader with Reduction of Memory Transfer Time (메모리 전송 효율을 개선한 programmable Fragment 쉐이더 설계)

  • Park, Tae-Ryoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2675-2680
    • /
    • 2010
  • Computation steps for 3D graphic processing consist of two stages - fixed operation stage and programming required stage. Using this characteristic of 3D pipeline, a hybrid structure between graphics hardware designed by fixed structure and programmable hardware based on instructions, can handle graphic processing more efficiently. In this paper, fragment Shader is designed under this hybrid structure. It also supports OpenGL ES 2.0. Interior interface is optimized to reduce the delay of entire pipeline, which may be occurred by data I/O between the fixed hardware and the Shader. Interior register group of the Shader is designed by an interleaved structure to improve the register space and processing speed.

Development of Nano-Stereolithography Process for Precise Fabrication of Three-Dimensional Micro-Devices (3차원 마이크로 디바이스 개발을 위한 나노 스테레오리소그래피 공정 개발에 관한 연구)

  • Park Sang-Hu;Lim Tae Woo;Yang Dong-Yol;Yi Shin Wook;Kong Hong-Jin;Lee Kwang-Sup
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.45-49
    • /
    • 2006
  • A nano-stereolithography (NSL) process has been developed for the fabrication of three-dimensional (3D) micro-devices with high spatital resolution of approximately 100 nm. In the NSL process, a complicated 3D structure can be created by stacking layer-by-layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D stacked structure was finished, unsolidified liquid resins were rinsed by ethanol to develop the fabricated structures; then, the polymerized structure was only left on the glass substrate. Through this work, several 3D microstructures such as a micro-channel, shell structures, and photonic crystals were fabricated to evaluate the possibility of the developed system.

Power Amplifier Design using the Novel PBG Structure for Linearity Improvement and Size Reduction (선형성 개선과 크기 축소를 위한 새로운 PBG 구조를 이용한 전력증폭기 설계)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.29-34
    • /
    • 2007
  • This paper presents a novel photonic bandgap (PBG) structure for size reduction and linearity improvement in power amplifier. The proposed structure is a two-dimensional (2-D) periodic lattice patterned on a dielectric slab that does not require nonplanar fabrication process. Throughout the experi-mental results, this structure has more broad stopband and high suppression performance than conventional three cell PBG and distorted uniplanar compact-PBG (DUC-PBG). This new PBG structure can be applied with power amplifier for linearity improvement. The 3rd intermodulation distortion (IMD3) of the power amplifier using new PBG structure is -36.16 dBc for (code division multiple access) CDMA applications. Compared with power amplifier without the proposed PBG structure, improved IMD3 is -13.49 dBc.

Pointwise CNN for 3D Object Classification on Point Cloud

  • Song, Wei;Liu, Zishu;Tian, Yifei;Fong, Simon
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.787-800
    • /
    • 2021
  • Three-dimensional (3D) object classification tasks using point clouds are widely used in 3D modeling, face recognition, and robotic missions. However, processing raw point clouds directly is problematic for a traditional convolutional network due to the irregular data format of point clouds. This paper proposes a pointwise convolution neural network (CNN) structure that can process point cloud data directly without preprocessing. First, a 2D convolutional layer is introduced to percept coordinate information of each point. Then, multiple 2D convolutional layers and a global max pooling layer are applied to extract global features. Finally, based on the extracted features, fully connected layers predict the class labels of objects. We evaluated the proposed pointwise CNN structure on the ModelNet10 dataset. The proposed structure obtained higher accuracy compared to the existing methods. Experiments using the ModelNet10 dataset also prove that the difference in the point number of point clouds does not significantly influence on the proposed pointwise CNN structure.

A Study on Optimization of Structure for Hexagon Tile Sub-array Antenna System (Hexagon 타일 부배열 안테나 시스템 구조 최적화에 관한 연구)

  • Jung, Jinwoo;Pyo, Seongmin
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.129-132
    • /
    • 2022
  • In this paper, a technique for optimizing the sub-array system structure that can minimize the side lobe level of the phased-array antenna is proposed. Optimization of the proposed array antenna structure is to adjust the spacing between sub-arrays and sub-arrays by using a hexagonal array structure of one sub-array and a hexagonal sub-array for six hexagonal arrays, and thus the entire phased array antenna system of the radiation pattern was optimized. Compared to the 2-dimensional planar antenna system, the proposed technique maintains a gain of 24.3 dBi and a half-power beam-width of 8.46 degrees without change, and only reduces -3.4 dB and -6.5 dB in the x-axis and y-axis directions, respectively.

R&D Intensity and Market Structure (R&D집약도와 시장구조)

  • Kim, Byung-Woo
    • Journal of Technology Innovation
    • /
    • v.12 no.3
    • /
    • pp.97-109
    • /
    • 2004
  • According to "structure-conduct-performance" paradigm in IO, market structure (concentration) determines conduct (R&D investments), and conduct yields market performance (ratio of price to marginal cost). Previous empirical studies on Schumpeter Mark I, II assumed that the explanatory variable (market structure) and the disturbance are uncorrelated in the R&D equation. In this situation, Ordinary Least Squares (OLS) estimates of the structural parameters are inconsistent, because the endogeneous variables (R&D and market structure) can be determined simultaneously. So, in this study, full information (or system methods) estimation is used to test Schumpeter hypothesis since joint estimation can as well bring efficiency gains in the seemingly uncorrelated regressions (SUR) setting.

  • PDF

3D BIM Modeling of Temporary Structure for Earthwork using Parametric Technique (파라메트릭 기술을 이용한 토공용 임시 구조물의 3D BIM 모델링)

  • Tanoli, Waqas Arshad;Raza, Hassnain;Lee, Seung-Soo;Park, Sang-Il;Seo, Jong-won
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • Nowadays Building Information Modeling (BIM) is a significant source of sharing project information in the construction industry. This method of sharing the information enhances the project understanding among stakeholders. Modeling of information using BIM is becoming an essential part of many construction projects around the globe. Despite rapid adoption of BIM in construction industry still, some sectors of the industry like earthwork have not yet reaped its full benefits. BIM has brought a paradigm shift through identification and integration of the roles and responsibilities of project participants on a single platform. BIM is a 3D model-based process which provides the insight into the efficient project planning and design. The 3D modeling can also be used significantly for the design of temporary structures in an earthwork project. This paper presents the quantity take-off methodology and parametric modeling technique for creating the temporary structures using 3D BIM process. A case study is conducted to implement the proposed temporary structure family design on a real site project. The study presented is beneficial for the earthwork project stakeholders to extract the relevant information using 3D BIM models in a project. It provides an opportunity to calculate the quantity of material required for a project accurately.