• Title/Summary/Keyword: 3-D Patch

Search Result 555, Processing Time 0.023 seconds

Radially Corrugated Circular Microstrip Patch Antenna for Miniaturization (소형화를 위한 방사 주름 원형 마이크로스트립 패치 안테나)

  • 이성민;김종래;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.12
    • /
    • pp.1233-1238
    • /
    • 2003
  • In this paper, radially corrugated circular-type microstrip patch antenna was devised and manufactured for GPS (center frequency: 1.575 GHz). Radially corrugated circular-type microstrip patch antenna having radiational corrugation-patch contributed to add size reduction ratio by lowering the resonant frequency because the edge current also has the extended and perpendicular path. As a result, radially corrugated circular-type microstrip patch antenna has 28 % area reduction than planer circular-type patch antenna for linear polarization and 27.7 % area reduction than planer circular-type patch antenna for circular polarization. Radially corrugated circular-type microstrip patch antenna is suitable for miniaturized receive antenna for GPS which has the characteristic of gain 2.1 dBd, axiai ratio 1.3 dB, 2 dB axial bandwidth 15 MHz(0.9 %).

Study on the Miniaturization Method of a 3-dimensional Linear Polarization Microstrip Patch Antenna using the Irises (Iris 부착 3차원 선형편파 마이크로스트립 패치 안테나의 소형화에 관한 연구)

  • Jang, Yon-Jeong;Seo, Jeong-Sik;Jo, Joung-Hwan;Woo, Jong-Myung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.450-453
    • /
    • 2003
  • In this paper, the miniaturization of linear polarization microstrip patch antenna is studied by attached Irises near the square linear polarization microstrip patch antenna which are induced the increase of current path. Microstrip patch antenna having the Irises is designed and fabricated at the resonant frequency of 1.575 GHz. The result is like that the resonant length of patch is reduced 41.5 mm which correspond to 50.9 % of that of plane type(81.5mm). The return loss is -28.5 dBd and -10 dB bandwidth is 103 MHz( 6.5 %). And as the radiation pattern is broad through the size reduction of patch, the gain is 5.9 dBd and -3 dB beamwidth of E-plane is $111.9^{\circ}$.

  • PDF

Design and Implementation of Koch curve Microstrip Patch Antenna for Antenna Miniaturization (안테나 소형화를 위한 koch curve 마이크로스트립 패치 안테나 설계 및 구현)

  • Kim, Sun-Woong;Lim, Dong-Seob;Kim, Young-Gon;Choi, Dong-You
    • Journal of Information Technology Services
    • /
    • v.12 no.3
    • /
    • pp.323-330
    • /
    • 2013
  • In this paper, miniaturized patch antenna operating at ISM band has been designed by applying the fractal technique. Various type of antenna structure, microstrip patch antenna and koch curve microstrip patch antenna has been proposed and simulated using Ansoft HFSS (High Frequency Structure Simulator). The area of microstrip patch antenna and koch microstrip patch antenna is 1,058 $mm^2$, and 891 $mm^2$ respectively, showing the size reduction ratio of 16%. The finally made koch curve microstrip patch antenna resonates at 2.45GHz with return loss of 22.69dB, VSWR of 1.2142, and antenna radiation gain of 3.26dBi.

Design of a Trapezoidal Microstrip Patch Antenna with Fractal Structure for Vehicle GPS (차량 GPS용 프랙털 구조의 사다리꼴 마이크로스트립 패치 안테나 설계)

  • Sung, Ha-Won;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.215-221
    • /
    • 2009
  • In this paper, a slotted trapezoidal microstrip fractal patch antenna is designed and fabricated for the vehicle GPS antenna. We designed air substrate patch antenna to obtain gain improvement by the elimination of dielectric loss. By applying fractal structure with crossed slot to trapezoidal patch, we obtained 42.5 % as much patch size as conventional triangular patch antenna. Measured bandwidth was 200 MHz on GPS band under VSWR 2:1 And gain was 4.31 dBi at resonant frequency that is 2$\sim$5 dB higher gain than conventional ceramic patch antenna on GPS band.

The Design of Tx 30GHz/ Rx 20GHz Dual Feeding Circular Polarized Patch Antenna Using LTCC Process (LTCC 공정을 이용한 송신 30GHz/수신 20GHz 이중급전 원형편파 패치 안테나 설계)

  • 김성남;오민석;천영민;최재익;표철식;이종문;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.448-454
    • /
    • 2004
  • In this paper, circular polarized antennas of Tx 30GHz and Rx 20GHz are implemented in LTCC process. Tx antenna has a circular patch structure and Rx antenna has a ring patch structure. The feeding line of Tx antenna is placed in the center hole of Rx ring patch antenna which is printed under Tx circular patch antenna layer. It makes antenna size smaller. Tx antenna's return loss in under -l0dB level from 30GHz to 31GHz and Rx antenna is under -10 dB from 20GHz to 21GHz. The isolation between two antennas is less than -20dB. Axial ratio is less than 3dB thoughout each band.

Directivity Gain Improvement Method for UWB Coplanar Patch Antenna (UWB 평면 패치안테나의 지향성이득의 향상 방법)

  • Joo, Chang-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.63-70
    • /
    • 2012
  • This paper discussed on the directive gain improvement method of the U-type ultra wide-band(UWB) planar patch antenna model with CPW feeding. For directive gain improvement, the U-type printed patch antenna model with CPW feeding is reconstructed as a microstrip structure by adding a reflection plane with aperture slot. The reflection coefficient of the reconstructed antenna is less than -6.5 dB(VSWR < 3.3) to the characteristic impedance of $50.08{\Omega}$ and showed the directive radiation patterns with the directive gain of 7.5 dBi ~ 10.1 dBi, the front-back ratio of 17.8 dB ~ 28.7 dB and the range of -3dB radiation angle over ${\pm}30^{\circ}$ to the main beam direction of ${\theta}=0^{\circ}$.

A Mesh Watermarking Using Patch CEGI (패치 CEGI를 이용한 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

A Compact Microstrip Patch Antenna Based on Metamaterials for Wi-Fi and WiMAX Applications

  • Nelaturi, Suman;Sarma, Nookala Venkata Satya Narasimha
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • A low profile asymmetrical fractal boundary patch antenna based on reactive impedance surface (RIS) and a mushroom unit cell (MUC) is proposed and studied for dual band operation. The sides of the square patch antenna are replaced with asymmetrical half circled fractal curves for circular polarization operation at patch mode band. The fractal patch antenna is loaded with MUC for dual band operation. The antenna radiation characteristics are investigated and illustrated with both simulated and experimental results in detail. The 10-dB return loss bandwidth are 8.48% (3.21-3.49 GHz) and 2.59% (2.30-2.36 GHz) at upper and lower resonance frequencies, respectively. The 3-dB axial ratio bandwidth is 4.26% (3.21-3.35 GHz). A close agreement between simulation data with experimental results is observed.

Design of Three-elements CRPA Arrays Using Improved Low-elevation Gain (저고도각 고이득 특성을 이용한 3 소자 CRPA 배열 안테나 설계)

  • Yoo, Sungjun;Byun, Gangil;Lee, Jun-yong;Choo, Hosung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.83-88
    • /
    • 2017
  • In this paper, we propose a three-element CRPA array with improved low-elevation gain. The proposed antenna consists of a feed patch and a radiating patch, and the feed patch is connected by a coaxial cable. The radiating patch is electromagnetically coupled to the feed patch, which allows to improve the low-elevation gain of the antenna. To demonstrate the suitability of the proposed antenna, the antenna characteristics are measured in a full anechoic chamber. The resulting bore-sight gain is 2.8 dBic with an axial ratio of 2.7 dB, and the average gain at the low-elevation direction of $75^{\circ}$ is -1.4 dBic. The results verify that the proposed antenna is suitable for CRPA arrays with anti-jamming capability.

A Study on the Characteristics of Microstrip Patch Antenna with Slot/T-Slot Capacitive Coupling (슬롯/T-슬롯 커패시티브 커플링을 이용한 마이크로스트립 패치 안테나의 특성 연구)

  • Seo, Ki-Won;Roh, Hyoung-Hwan;Seong, Yeong-Rak;Oh, Ha-Ryoung;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1282-1288
    • /
    • 2010
  • This paper proposes a novel microstrip patch antenna to make impedance matching possible by using slot/T-slot capacitive coupling between the patch and 50 $\Omega$ feed line on a ground plane. The single band/linear polarization patch antenna shows linear polarization at 2.4 GHz band. Under -10 dB return loss, the single band/linear polarization patch antenna obtains 50 MHz bandwidth at 2.37 GHz~2.42 GHz. The dual band/dual polarization microstrip patch antenna shows circular polarization at 2.4 GHz band and linear polarization at 3.1 GHz band. Under -10 dB return loss, The dual band/dual polarization microstrip patch antenna obtains 340 MHz bandwidth at 2.23~2.57 GHz and 375 MHz bandwidth at 2.95~3.325 GHz.