• Title/Summary/Keyword: 3-D PCA

Search Result 150, Processing Time 0.028 seconds

IMPRESSION-DRIVEN DESIGN SCHEME FOR A CLASS OF 3D OBJECTS BASED ON MORPHABLE 3D SHAPE MODEL, AND ITS AUTOMATIC BUILDUP BY SUPPLEMENTARY FEATURE SAMPLING

  • Inaba, Yoshinori;Kochi, Jumpei;Ishi, Hanae;Gyoba, Jiro;Akamatsu, Shigeru
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.606-611
    • /
    • 2009
  • This paper describes a method for achieving a novel design within a class of 3D objects that would create a preferred impression on users. Physical parameters of the 3D objects that might strongly contribute to their visual impressions are sought through computational investigation of the impression ratings obtained for learning samples. "Car body" was selected as the class of 3D objects to be investigated. A morphable 3D model of car bodies that describes the variations in appearance using a smaller number of parameters was obtained. Based on each car body's rating for the impression of speediness obtained by paired comparison, the visual impression was transformed by manipulating the parameters defined in the morphable 3D model. The validity of the proposed method was confirmed by psychological experiments. A new scheme is also proposed to properly re-sample a novel object of a peculiar shape so that such an object could also be represented by the morphable 3D model.

  • PDF

A Study for Vision-based Estimation Algorithm of Moving Target Using Aiming Unit of Unguided Rocket (무유도 로켓의 조준 장치를 이용한 영상 기반 이동 표적 정보 추정 기법 연구)

  • Song, Jin-Mo;Lee, Sang-Hoon;Do, Joo-Cheol;Park, Tai-Sun;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.315-327
    • /
    • 2017
  • In this paper, we present a method for estimating of position and velocity of a moving target by using the range and the bearing measurements from multiple sensors of aiming unit. In many cases, conventional low cost gyro sensor and a portable laser range finder(LRF) degrade the accuracy of estimation. To enhance these problems, we propose two methods. The first is background image tracking and the other is principal component analysis (PCA). The background tracking is used to assist the low cost gyro censor. And the PCA is used to cope with the problems of a portable LRF. In this paper, we prove that our method is robust with respect to low-frequency, biased and noisy inputs. We also present a comparison between our method and the extended Kalman filter(EKF).

Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material (3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구)

  • Kim, Min-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

Stereo Vision Based 3D Input Device (스테레오 비전을 기반으로 한 3차원 입력 장치)

  • Yoon, Sang-Min;Kim, Ig-Jae;Ahn, Sang-Chul;Ko, Han-Seok;Kim, Hyoung-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.429-441
    • /
    • 2002
  • This paper concerns extracting 3D motion information from a 3D input device in real time focused to enabling effective human-computer interaction. In particular, we develop a novel algorithm for extracting 6 degrees-of-freedom motion information from a 3D input device by employing an epipolar geometry of stereo camera, color, motion, and structure information, free from requiring the aid of camera calibration object. To extract 3D motion, we first determine the epipolar geometry of stereo camera by computing the perspective projection matrix and perspective distortion matrix. We then incorporate the proposed Motion Adaptive Weighted Unmatched Pixel Count algorithm performing color transformation, unmatched pixel counting, discrete Kalman filtering, and principal component analysis. The extracted 3D motion information can be applied to controlling virtual objects or aiding the navigation device that controls the viewpoint of a user in virtual reality setting. Since the stereo vision-based 3D input device is wireless, it provides users with a means for more natural and efficient interface, thus effectively realizing a feeling of immersion.

A Study on the Classification of Islands by PCA ( I ) (PCA에 의한 도서분류에 관한 연구( I ))

  • 이강우
    • The Journal of Fisheries Business Administration
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 1983
  • This paper considers a classification of the 88 islands located at Kyong-nam area in Korea, using by examples of 12 components of the islands. By means of principal component analysis 2 principle components were extracted, which explained a total of 73.7% of the variance. Using an eigen variable criterion (λ>1), no further principle components were discussed. Principal component 1 and 2 explained 63.4% and 10.3% of the total variance respectively, The representation of the unrelated factor scores along the first and second principal axes produced a new information with respect to the classification of the islands. Based upon the representation, 88 islands were classified into 6 groups i. e. A, B, C, D, E, and F according to similarity of the components among them in this paper. The "Group F" belongs to a miscellaneous assortment that does not fit into the logical category. category.

  • PDF

Smoothed Local PC0A by BYY data smoothing learning

  • Liu, Zhiyong;Xu, Lei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.109.3-109
    • /
    • 2001
  • The so-called curse of dimensionality arises when Gaussian mixture is used on high-dimensional small-sample-size data, since the number of free elements that needs to be specied in each covariance matrix of Gaussian mixture increases exponentially with the number of dimension d. In this paper, by constraining the covariance matrix in its decomposed orthonormal form we get a local PCA model so as to reduce the number of free elements needed to be specified. Moreover, to cope with the small sample size problem, we adopt BYY data smoothing learning which is a regularization over maximum likelihood learning obtained from BYY harmony learning to implement this local PCA model.

  • PDF

SPVD based Dimension Reduction Algorithm using Vector Angle of Spectral Curve for Material Classification (물질분류를 위한 분광곡선의 벡터 각을 이용한 SPVD 차원축소 알고리즘)

  • Yu, Jae-Hwan;Kim, Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.387-389
    • /
    • 2012
  • 초분광영상은 사람이 볼 있는 가시광선 영역부터 자외선 파장 대역까지 수십에서 수천 개의 데이터를 가지고 있는 고차원 데이터이다. 그렇기 때문에 초분광영상을 이용한 연구에는 많은 저장 공간과 고사양의 성능을 필요로 한다. 따라서 초분광영상의 차원을 감소시켜 데이터용량을 줄이고, 처리속도를 향상시키기 위한 연구들이 이루어지고 있다. 기존에 자주 사용되던 방법인 PCA와 ICA는 차원축소를 위하여 고유벡터를 계산하고 이를 이용하여 축을 변경하여 차원축소를 한다. 하지만 초분광영상에서는 이러한 방법으로 차원을 축소할 시 정확도가 감소한다. 따라서 본 논문에서는 특징 밴드를 추출하고 이를 이용하여 차원축소를 하는 SPVD 알고리즘을 제안한다. SPVD(Spectral pair vector decomposition) 알고리즘은 d개의 그룹으로 나누고 각 그룹들의 양벡터 각과 음벡터 각을 계산한 후 이를 이용하여 차원축소를 한다. 실험 결과 PCA는 61차원에서 70.05%, ICA는 71차원에서 63.03% 정확도를 보이는데 비해 SPVD 알고리즘은 3차원에서 83% 정확도를 보였다.

A Study on Clutter Rejection using PCA and Stochastic features of Edge Image (주성분 분석법 및 외곽선 영상의 통계적 특성을 이용한 클러터 제거기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.12-18
    • /
    • 2010
  • Automatic Target Detection (ATD) systems that use forward-looking infrared (FLIR) consists of three stages. preprocessing, detection, and clutter rejection. All potential targets are extracted in preprocessing and detection stages. But, this results in a high false alarm rates. To reduce false alarm rates of ATD system, true targets are extracted in the clutter rejection stage. This paper focuses on clutter rejection stage. This paper presents a new clutter rejection technique using PCA features and stochastic features of clutters and targets. PCA features are obtained from Euclidian distances using which potential targets are projected to reduced eigenspace selected from target eigenvectors. CV is used for calculating stochastic features of edges in targets and clutters images. To distinguish between target and clutter, LDA (Linear Discriminant Analysis) is applied. The experimental results show that the proposed algorithm accurately classify clutters with a low false rate compared to PCA method or CV method

The Crystal Structure of Sulfisomidine (설피소미딘의 결정구조)

  • Jeong, Jong-Sun;Jo, Seong-Il;Jeong, Yong-Je
    • Korean Journal of Crystallography
    • /
    • v.2 no.2
    • /
    • pp.22-27
    • /
    • 1991
  • 4-Amino-n-(2,6-dimethyk4-pyrimidnyl) benzenesulfonamide, C12H14N402. Unit cell parameters are a =12.626, b=11.262, c=9.375, a:b:r=90°, V =1333.07h3, D,at=1.390 g /cm3, and λ(Cu-Ka)=1.5418, The space group is Pca21, Orthorhombic. The final R factor of 1068 unique observed reflections is R=0.040. Two pair of molecules which related by symmetry operation has strong hydrogen bond. One is between H(N2) and N(3), and the other is H(NIA) and 0(1).

  • PDF

Rapid Stitching Method of Digital X-ray Images Using Template-based Registration (템플릿 기반 정합 기법을 이용한 디지털 X-ray 영상의 고속 스티칭 기법)

  • Cho, Hyunji;Kye, Heewon;Lee, Jeongjin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.6
    • /
    • pp.701-709
    • /
    • 2015
  • Image stitching method is a technique for obtaining an high-resolution image by combining two or more images. In X-ray image for clinical diagnosis, the size of the imaging region taken by one shot is limited due to the field-of-view of the equipment. Therefore, in order to obtain a high-resolution image including large regions such as a whole body, the synthesis of multiple X-ray images is required. In this paper, we propose a rapid stitching method of digital X-ray images using template-based registration. The proposed algorithm use principal component analysis(PCA) and k-nearest neighborhood(k-NN) to determine the location of input images before performing a template-based matching. After detecting the overlapping position using template-based matching, we synthesize input images by alpha blending. To improve the computational efficiency, reduced images are used for PCA and k-NN analysis. Experimental results showed that our method was more accurate comparing with the previous method with the improvement of the registration speed. Our stitching method could be usefully applied into the stitching of 2D or 3D multiple images.