• 제목/요약/키워드: 3-D PCA

검색결과 150건 처리시간 0.023초

새로운 Boosted 3-D PCA 기반 Head Pose Estimation 방법 (A New Head Pose Estimation Method based on Boosted 3-D PCA)

  • 이경민;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권6호
    • /
    • pp.105-109
    • /
    • 2021
  • 본 논문에서는 Boosted 3-D PCA 방법을 데이터 세트로 평가하고 성능을 평가한다. 그런 다음 네트워크의 특징과 성능을 분석하겠습니다. 본 논문에서는 Boosted 3-D PCA 학습방법을 사용하여 300W-LP 데이터 학습을 수행했으며 AFLW2000 데이터 세트를 사용하여 평가를 평가했다. 결과는 이 성능 결과는 기존 랜드마크 대 포즈 방법보다 자유롭게 얼굴 이미지의 데이터 세트를 사용하여 학습할 수 있으므로 실제 상황에서 포즈를 정확하게 예측할 수 있다. 키포인트 세트의 최적화는 독립적이지 않기 때문에, 우리는 계산 시간을 줄일 방법을 확인했다. 이 방법은 Boosted 3-D PCA 성능을 향상시키거나 다양한 애플리케이션 도메인에 적용하는 데 매우 중요한 자원이 될 것으로 예상한다

회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법 (A New Image Analysis Method based on Regression Manifold 3-D PCA)

  • 이경민;인치호
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권2호
    • /
    • pp.103-108
    • /
    • 2022
  • 본 논문에서는 회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법을 제안한다. 제안된 방법은 대용량 이미지 데이터 입력 시 효율적인 차원 축소를 위해 개선된 매니폴드 3-D PCA와 PCA의 비선형 확장이 가능한 오토인코더를 기반으로 설계된 구조로 회귀분석 알고리즘으로 구성된 새로운 이미지 분석 방법이다. 오토인코더의 구성으로는 이미지 픽셀 값을 3차원 회전을 통한 최전의 초평면을 도출하는 회귀 매니폴드 3-D PCA와 딥러닝 구조와 유사한 Bayesian Rule 구조를 적용한다. 성능 검증을 위해 실험을 수행한다. 미세먼지 이미지를 활용하여 이미지를 향상되며, 이를 분류 모델을 통한 정확도 성능 평가를 수행한다. 그 결과 딥러닝 성능에 유효함을 확인할 수 있다.

CNN 기반 초분광 영상 분류를 위한 PCA 차원축소의 영향 분석 (The Impact of the PCA Dimensionality Reduction for CNN based Hyperspectral Image Classification)

  • 곽태홍;송아람;김용일
    • 대한원격탐사학회지
    • /
    • 제35권6_1호
    • /
    • pp.959-971
    • /
    • 2019
  • 대표적인 딥러닝(deep learning) 기법 중 하나인 Convolutional Neural Network(CNN)은 고수준의 공간-분광 특징을 추출할 수 있어 초분광 영상 분류(Hyperspectral Image Classification)에 적용하는 연구가 활발히 진행되고 있다. 그러나 초분광 영상은 높은 분광 차원이 학습 과정의 시간과 복잡도를 증가시킨다는 문제가 있어 이를 해결하기 위해 기존 딥러닝 기반 초분광 영상 분류 연구들에서는 차원축소의 목적으로 Principal Component Analysis (PCA)를 적용한 바 있다. PCA는 데이터를 독립적인 주성분의 축으로 변환시킬 수 있어 분광 차원을 효율적으로 압축할 수 있으나, 분광 정보의 손실을 초래할 수 있다. PCA의 사용 유무가 CNN 학습의 정확도와 시간에 영향을 미치는 것은 분명하지만 이를 분석한 연구가 부족하다. 본 연구의 목적은 PCA를 통한 분광 차원축소가 CNN에 미치는 영향을 정량적으로 분석하여 효율적인 초분광 영상 분류를 위한 적절한 PCA의 적용 방법을 제안하는 데에 있다. 이를 위해 PCA를 적용하여 초분광 영상을 축소시켰으며, 축소된 차원의 크기를 바꿔가며 CNN 모델에 적용하였다. 또한, 모델 내의 컨볼루션(convolution) 연산 방식에 따른 PCA의 민감도를 분석하기 위해 2D-CNN과 3D-CNN을 적용하여 비교 분석하였다. 실험결과는 분류정확도, 학습시간, 분산 비율, 학습 과정을 통해 분석되었다. 축소된 차원의 크기가 분산 비율이 99.7~8%인 주성분 개수일 때 가장 효율적이었으며, 3차원 커널 경우 2D-CNN과는 다르게 원 영상의 분류정확도가 PCA-CNN보다 더 높았으며, 이를 통해 PCA의 차원축소 효과가 3차원 커널에서 상대적으로 적은 것을 알 수 있었다.

Modified Local Directional Pattern 영상을 이용한 얼굴인식 (Face Recognition using Modified Local Directional Pattern Image)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권3호
    • /
    • pp.205-208
    • /
    • 2013
  • 일반적으로 이진패턴 변환은 조명 변화에 강인한 특성을 가지므로, 얼굴인식 및 표정인식 분야에 널리 사용되고 있다. 이에, 본 논문에서는 기존의 LDP(Local Directional Pattern)의 텍스처 성분을 개선한 MLDP(Modified LDP) 변환 영상에 2D-PCA(Two-Dimensional Principal Component Analysis) 알고리즘을 결합한 조명변화에 강인한 얼굴인식 방법에 대하여 제안한다. 기존의 LBP(Local Binary Pattern)나 LDP와 같은 이진패턴 변환들이 히스토그램 특징 추출을 위해 주로 사용되는 것과는 다르게, 본 논문에서 제안하는 방법은 MLDP 영상을 2D-PCA 특징추출을 위해 직접 사용한다는 특성을 갖는다. 제안 방법의 성능평가는 PCA(Principal Component Analysis), 2D-PCA 및 가버변환 영상과 LBP를 결합한 알고리즘을 사용하여, 다양한 조명변화 환경에서 구축된 Yale B 및 CMU-PIE 데이터베이스를 이용하여 수행되었다. 실험 결과, MLDP 영상과 2D-PCA를 사용한 제안 방법이 가장 우수한 인식 성능을 보임을 확인하였다.

모션 데이터의 PCA투영에 의한 3차원 아바타의 실시간 표정 제어 (Realtime Facial Expression Control of 3D Avatar by PCA Projection of Motion Data)

  • 김성호
    • 한국멀티미디어학회논문지
    • /
    • 제7권10호
    • /
    • pp.1478-1484
    • /
    • 2004
  • 본 논문은 사용자로 하여금 얼굴표정들의 공간으로부터 일련의 표정을 실시간적으로 선택하게 함으로써 3차원 아바타의 실시간적 얼굴 표정을 제어하는 기법을 기술한다. 본 시스템에서는 약 2400여개의 얼굴 표정 프레임을 이용하여 표정공간을 구성하였다. 본 기법에서는 한 표정을 표시하는 상태표현으로 얼굴특징점들 간의 상호거리를 표시하는 거리행렬을 사용한다. 이 거리행렬의 집합을 표정공간으로 한다. 3차원 아바타의 얼굴 표정은 사용자가 표정공간을 항해하면서 실시간적으로 제어한다. 이를 도와주기 위해 표정공간을 PCA투영 기법을 이용하여 2차원 공간으로 가시화했다. 본 시스템이 어떤 효과가 있는지를 알기 위해 사용자들로 하여금 본 시스템을 사용하여 3차원 아바타의 얼굴 표정을 제어하게 했는데, 본 논문은 그 결과를 평가한다.

  • PDF

얼굴인증 방법들의 조명변화에 대한 견인성 비교 연구 (Study On The Robustness Of Face Authentication Methods Under illumination Changes)

  • 고대영;김진영;나승유
    • 정보처리학회논문지B
    • /
    • 제12B권1호
    • /
    • pp.9-16
    • /
    • 2005
  • 본 논문은 얼굴인증 시스템 구현과 조명변화에 견인한 얼굴인증 방법들에 관한 연구에 초점을 둔다. 얼굴인증 시스템 구현을 위한 방법으로 PCA(Principal Component Analysis), GMM(Gaussian Mixture Models), 1차원 HMM(1 Dimensional Hidden Markov Models), 준 2차원 HMM(Pseudo 2 Dimensional Hidden Markov Models) 방법을 이용한다. 네 가지 다른 얼굴인증 방법들의 조명변화에 대한 성능비교 실험을 수행한다. 조명변화실험을 위해 얼굴이미지의 왼쪽에서 오른쪽으로 인공적인 조명효과(${\delta}=0,40,60,80$)를 준다. 얼굴특징벡터는 얼굴이미지에서 분할한 각 블록에 대한 2D DCT(2 Dimensional Discrete Cosine Transform) 계수를 이용하고 실험은 ORL(Olivetti Research Laboratory) 얼굴데이터베이스를 사용한다. 실험결과 모든 경우 조명변화 값이 커질수록 성능저하가 발생한다. 또한 조명변화가 없는 경우(${\delta}=0$) 준 2차원 HMM이 $2.54{\%}$, 1차원 HMM이 $3.18{\%}$, PCA가 $11.7{\%}$, GMM이 $13.38{\%}$의 EER(Equal Error Rate) 성능을 나타낸다. 조명변화가 없는 경우(${\delta}=0$) 1차원 HMM 방법이 PCA 방법보다 좋은 성능을 나타내지만 조명변화 ${\delta}{\geq}40$인 때에는 반대로 PCA 방법이 더 좋은 성능을 나타낸다. 마지막으로 준 2차원 HMM의 경우 조명변화에 관계없이 가장 좋은 EER성능을 나타낸다.

시비량에 따른 수도 계통간의 형태적 유사도 변이 (Variation of Morphological Similarity between Rice Breeding Lines in the Different Fertilizer Levels)

  • 이영만;구자옥
    • 한국작물학회지
    • /
    • 제30권4호
    • /
    • pp.375-380
    • /
    • 1985
  • 수도 8개 단간계통을 무비, 소비, 보비, 다비의 시비구에 공시하여 수량구요소의 수량에 대한 경노계수와 D$^2$, PCA, Q상관에 의한 Dendrogram을 작성하여 시비량간 및 방법간을 비교한 결과는 다음과 같다. 1. 8개 계통의 형질평균치는 시비량에 따라 큰 차이를 보이지 않았으나 동일시비내 계통간에는 유의차가 있었다. 2. 형질간 유의성 있는 상관을 보인 경우는 많지 않았으며 시비량이 많은 구에서 유의한 상관을 보인 경우가 적었다. 3. 수량구성요소의 수량에 대한 직접효과는 수당입수가 가장 컸고 다음이 주당수수였으며 이들은 다비에서 더욱 커졌다. 수수의 입수를 통고 간접효과가 부로 컸으며 다비에서 더욱 더 컸다. 4. D$^2$, Q상관, PCA에 의한 유사도는 시비량 차이에 따라 큰 차이는 없었으며 3가지 방법간에서는 D$^2$와 Q상관은 완전 일치하였으며 PCA에 의하여서도 이들과 비슷하였다.

  • PDF

(2D)2 PCA알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터 설계 (Design of Optimized RBFNNs based on Night Vision Face Recognition Simulator Using the 2D2 PCA Algorithm)

  • 장병희;김현기;오성권
    • 한국지능시스템학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 본 연구에서 $(2D)^2$ PCA 알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터을 설계한다. CCD 카메라로 야간에 이미지를 취득할 경우 조도가 낮기 때문에 인식을 수행하기 어려운 수준의 이미지가 취득되는 문제점이 발생한다. 따라서 본 논문에서는 나이트 비전 카메라를 이용하여 야간 얼굴을 취득하였다. 또한 얼굴과 비얼굴 이미지 영역에서 야간 얼굴 이미지를 검출하기 위해 Ada-Boost 알고리즘을 사용한다. 그리고 히스토그램 평활화를 이용하여 이미지의 왜곡 현상을 최소화 한다. 이렇게 얻어진 고차원 이미지를 저차원으로 축소하기 위해 $(2D)^2$ PCA 알고리즘을 사용했다. 다항식 기반 RBFNNs을 이용한 지능형 패턴 분류 모델을 통하여 얼굴인식을 수행 한다. 마지막으로 차분진화 알고리즘을 사용하여 파라미터를 최적화 한다. $(2D)^2$ PCA를 최적 RBFNNs 기반 나이트비전 얼굴인식 시스템의 성능 평가를 위하여 IC&CI Lab data를 사용하고 실제 얼굴 인식 시스템을 설계한다.

호흡보호구의 선정, 사용 및 관리를 위한 한국형 노동인구의 인두 개발 (Development of Headforms for the Labor Population in Selection, Use and Maintenance of Respirators in Korea)

  • 박정근;김세동;이은지
    • 한국산업보건학회지
    • /
    • 제34권3호
    • /
    • pp.279-291
    • /
    • 2024
  • Objective: This was to develop headforms for the labor population, based on a three-dimensional(3D) face dimensions data base(DB) and a principal component analysis(PCA) fit test panel, in selection, use and maintenance of respirators in Korea. Methods: This study was part of a two-year-project initiated in 2021. The study was designed and conducted in line with ISO 16976-2 while subjects were those employed in the development of the PCA fit test panel. The approaches included literature review; examination on conformity of the 3D face dimensions DB; and development of headforms representing the labor population. The mean data were used in order to construct each model of the headforms through a way of 3D modeling and 3D printing technology. Results: A total of 2,752 subjects were determined. Five models of headforms(small, medium, large, long-narrow, short-wide) were completely constructed for the labor population. For example, means of the 10 face dimensions for medium headform model were: minimum frontal breadth 106 mm, face width 136 mm, jaw width 127 mm, face length 111 mm, interpupillary distance 69 mm, head breadth 164 mm, nose protrusion 12 mm, nose breadth 34 mm, nasal root breadth 35 mm, and nose length 50 mm. Conclusions: Five models of headforms were newly constructed using the study data. It is likely desirable that the constructed headforms, together with the 3D face dimensions DB as well as the PCA fit test panel, can be utilized more effectively in selection, use and maintenance of respirators for users including the labor population.

공간 계층 분해를 이용한 효율적인 3 차원 메쉬 시퀀스 압축 (Efficient 3D Mesh Sequence Compression Using a Spatial Layer Decomposition)

  • 안재균;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.14-15
    • /
    • 2013
  • 본 논문에서는 공간 계층 분해를 이용한 3 차원 메쉬 시퀀스 압축 기법을 제안한다. 제안하는 기법은 우선 각 점에 대한 시간적 궤적을 공분산 행렬로 표현하고, PCA(Principal component analysis)를 적용하여 시간 궤적에 대한 고유 벡터와 PCA 계수를 획득한다. 공간적인 예측을 통해 PCA 계수에 대한 벡터 차를 추출하고, 벡터 차와 그것에 대한 고유 벡터를 전송한다. 제안하는 방법은 PCA 계수 예측의 성능을 높이기 위해 점진적 압축에서 사용하는 공간 계층 분해 기법을 적용하여, 계수 예측에 효과적인 이웃 점을 지정하도록 한다. 또한, 이웃 점 개수를 사용자가 임의로 지정할 수 있도록 하여, 성능과 복잡도간의 트레이드 오프를 제어할 수 있도록 한다. 다양한 모델에 대한 실험 결과를 통해 제안하는 방법의 성능을 확인한다.

  • PDF