• 제목/요약/키워드: 3-D Neural Network

검색결과 427건 처리시간 0.027초

가중 퍼지소속함수 기반 신경망과 웨이블릿 변환을 이용한 심실 빈맥/세동 검출 (Detecting Ventricular Tachycardia/Fibrillation Using Neural Network with Weighted Fuzzy Membership Functions and Wavelet Transforms)

  • 신동근;장진흥;이상홍;임준식;이정현
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.19-26
    • /
    • 2009
  • 본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with weighted Fuzzy Membership Functions, NEWFM)과 웨이블릿 변환(wavelet transforms, WT)을 이용하여 Creighton University Ventricular Tachyarrhythmia Database(CUBD)의 심전도 신호로부터 정상리듬(normal sinus rhythm, NSR)과 심실 빈맥/세동(Ventricular tachycardia/fibrillation VT/VF)을 검출하는 방안을 제시하고 있다. NEWFM에서 사용할 특정입력을 추출하기 위해서 첫 번째 단계에서는 웨이블릿 변환을 이용하여 스케일 레벨 3과 레벨 4의 주파수 대역에서 d3과 d4의 계수들을 각각 선택하였다. 두 번째 단계에서는 d3과 d4의 계수들에 대한 구간별 표준편차를 이용하여 8개의 특징입력을 추출하였다. NEWFM은 이들 8개의 특정입력을 이용하여 정상리듬과 심실 빈맥/세동을 검출하였고 그 결과로 90.1%의 검출성능을 나타내었다.

스크린 투영 방식의 거품 효과를 개선하기 위한 노이즈 제거 신경망 (Denoising neural network to improve the foam effect via screen projection method)

  • 김종현;김동희;김수균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.663-666
    • /
    • 2021
  • 본 논문에서는 바다와 같은 스케일이 큰 장면인 물 시뮬레이션에서 표현되는 거품 효과(Foam effects)를 노이즈 없이 디테일하게 표현할 수 있는 프레임워크를 소개한다. 거품이 생성될 위치와 거품 입자의 이류는 기존의 접근법인 스크린 투영 방법을 통해 계산한다. 이 과정에서 중요한 것이 투영맵이지만 이산화된 스크린 공간에 운동량을 투영하는 과정에서 노이즈가 발생한다. 본 논문에서는 노이즈 제거 신경망(Denoising neural network)을 활용하여 이 문제를 효율적으로 풀어낸다. 투영맵을 통해 거품이 생성될 영역이 선별되면 2D공간을 3D공간으로 역변환(Inverse transformation)하여 거품 입자를 생성한다. 결과적으로 깔끔한 거품 효과뿐만 아니라, 노이즈 제거 과정으로 인해 소실되는 거품 없이 안정적으로 거품 효과를 만들어냈다.

  • PDF

Vibration control of 3D irregular buildings by using developed neuro-controller strategy

  • Bigdeli, Yasser;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • 제49권6호
    • /
    • pp.687-703
    • /
    • 2014
  • This paper develops a new nonlinear model for active control of three-dimensional (3D) irregular building structures. Both geometrical and material nonlinearities with a neuro-controller training algorithm are applied to a multi-degree-of-freedom 3D system. Two dynamic assembling motions are considered simultaneously in the control model such as coupling between torsional and lateral responses of the structure and interaction between the structural system and the actuators. The proposed control system and training algorithm of the structural system are evaluated by simulating the responses of the structure under the El-Centro 1940 earthquake excitation. In the numerical example, the 3D three-story structure with linear and nonlinear stiffness is controlled by a trained neural network. The actuator dynamics, control time delay and incident angle of earthquake are also considered in the simulation. Results show that the proposed control algorithm for 3D buildings is effective in structural control.

3차원 가시화 기법을 이용한 터널설계 (3D Visualization Technique Based Tunnel Design)

  • 홍성완;배규진;김창용;서용석;김광염
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.759-766
    • /
    • 2002
  • In the paper the authors describe the development of ITIS(Intelligent Tunneling Information System) for the Purpose of applying the 3D visualization technique, GIS, AI(Artificial Intelligence) to tunnel design and construction. VR(Virtual Reality) and 3D visualization techniques are applied in order to develope the 3D model of characteristics and structures of ground and rock mass. Database for all the materials related to site investigation and tunnel construction is developed using GIS technique. AI technique such as fuzzy theory and neural network is applied to predict ground settlement, decide tunnel support method and estimate ground and rock mass properties according to tunnel excavation steps. ITIS can help to inform various necessary tunnel information to engineers quickly and manage tunnel using acquired information based on D/B.

  • PDF

Intelligent Traffic Light using Fuzzy Neural Network

  • Park, Myeong-Bok;You-Sik, Hong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.66-71
    • /
    • 2003
  • In the past, when there were few vehicles on the road, the T.O.D.(Time of Day) traffic signal worked very well. The T.O.D. signal operates on a preset signal cycling which cycles on the basis of the average number of average passenger cars in the memory device of an electric signal unit. Today, with increasing traffic and congested roads, the conventional traffic light creates startup-delay time and end lag time so that thirty to forty-five percent efficiency in traffic handling is lost, as well as adding to fuel costs. To solve this problem, this paper proposes a new concept of optimal green time algorithm, which reduces average vehicle waiting time while improving average vehicle speed using fuzzy rules and neural networks. Through computer simulation, this method has been proven to be much more efficient than fixed time interval signals. Fuzzy Neural Network will consistanly improve average waiting time, vehicle speed, and fuel consumption.

Land cover classification using LiDAR intensity data and neural network

  • Minh, Nguyen Quang;Hien, La Phu
    • 한국측량학회지
    • /
    • 제29권4호
    • /
    • pp.429-438
    • /
    • 2011
  • LiDAR technology is a combination of laser ranging, satellite positioning technology and digital image technology for study and determination with high accuracy of the true earth surface features in 3 D. Laser scanning data is typically a points cloud on the ground, including coordinates, altitude and intensity of laser from the object on the ground to the sensor (Wehr & Lohr, 1999). Data from laser scanning can produce products such as digital elevation model (DEM), digital surface model (DSM) and the intensity data. In Vietnam, the LiDAR technology has been applied since 2005. However, the application of LiDAR in Vietnam is mostly for topological mapping and DEM establishment using point cloud 3D coordinate. In this study, another application of LiDAR data are present. The study use the intensity image combine with some other data sets (elevation data, Panchromatic image, RGB image) in Bacgiang City to perform land cover classification using neural network method. The results show that it is possible to obtain land cover classes from LiDAR data. However, the highest accurate classification can be obtained using LiDAR data with other data set and the neural network classification is more appropriate approach to conventional method such as maximum likelyhood classification.

통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측 (Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm)

  • 정진수;이희근;박영환
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

DeepAct: A Deep Neural Network Model for Activity Detection in Untrimmed Videos

  • Song, Yeongtaek;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.150-161
    • /
    • 2018
  • We propose a novel deep neural network model for detecting human activities in untrimmed videos. The process of human activity detection in a video involves two steps: a step to extract features that are effective in recognizing human activities in a long untrimmed video, followed by a step to detect human activities from those extracted features. To extract the rich features from video segments that could express unique patterns for each activity, we employ two different convolutional neural network models, C3D and I-ResNet. For detecting human activities from the sequence of extracted feature vectors, we use BLSTM, a bi-directional recurrent neural network model. By conducting experiments with ActivityNet 200, a large-scale benchmark dataset, we show the high performance of the proposed DeepAct model.

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

Harmonic Mitigation and Power Factor Improvement using Fuzzy Logic and Neural Network Controlled Active Power Filter

  • Kumar, V.Suresh;Kavitha, D.;Kalaiselvi, K.;Kannan, P. S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.520-527
    • /
    • 2008
  • This work focuses on the evaluation of active power filter which is controlled by fuzzy logic and neural network based controller for harmonic mitigation and power factor enhancement. The APF consists of a variable DC voltage source and a DC/AC inverter. The task of an APF is to make the line current waveform as close as possible to a sinusoid in phase with the line voltage by injecting the compensation current. The compensation current is estimated using adaptive neural network. Using the estimated current, the proposed APF is controlled using neural network and fuzzy logic. Computer simulations of the proposed APF are performed using MATLAB. The results show that the proposed techniques for the evaluation of APF can reduce the total harmonic distortion less than 3% and improve the power factor of the system to almost unity.