• Title/Summary/Keyword: 3-D Modelling

Search Result 488, Processing Time 0.025 seconds

AUTOMATIC IDENTIFICATION OF ROOF TYPES AND ROOF MODELING USING LIDAR

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.83-86
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using LiDAR data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression). If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Based on the roof types identified in automated fashion, the 3D building reconstruction is performed. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LiDAR data and digital map could be a feasible method of modelling 3D building reconstruction.

  • PDF

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

Personal Computer Aided 3-D Model Generation (I) (PC를 이용한 3차원 입체형상 모델생성 연구 (I))

  • 변문현;오익수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • The purpose of this study is to develop a personal computer aided 3-D geometric modeller. To perform this study, we set up a cube, cylinder, and a prism as primitives in the first segment of this study. By modelling the 3-D object through their transformation, addition, and subtraction, we proved the validity of the developed algorithm and its computer program. Some examples show the results of applying the program to model a few simple shapes of the machine parts. These results met the first aim of this study.

A Geographic Modeling System Using GIS and Real Images (GIS와 실영상을 이용한 지리 모델링 시스템)

  • 안현식
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.137-149
    • /
    • 2004
  • For 3D modelling artificial objects with computers, we have to draw frames and paint the facet images on each side. In this paper, a geographic modelling system building automatically 3D geographic spaces using GIS data and real images of buildings is proposed. First, the 3D model of terrain is constructed by using TIN and DEM algorithms. The images of buildings are acquired with a camera and its position is estimated using vertical lines of the image and the GIS data. The height of the building is computed with the image and the position of the camera, which used for making up the frames of buildings. The 3D model of the building is obtained by detecting the facet iamges of the building and texture mapping them on the 3D frame. The proposed geographical modeling system is applied to real area and shows its effectiveness.

  • PDF

Mine Haulage System Design for Reopening of Yangyang Iron Mine using 3D Modelling (3차원 모델링을 이용한 재개광 양양철광의 운반시스템 설계)

  • Son, Youngjin;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.412-428
    • /
    • 2012
  • To achieve mine development, a large amount of data concerned with the geological structure and the ore body had to be investigated and collected through geological survey, drilling and geophysical explorations. In most previous cases, however, the data were usually analyzed two dimensionally and those results showed some limits because of their 2D presentation. Those 2D maps such as geological plane sections or longitudinal sections cause lots of difficulties in understanding the complex geological structure or the feature of ore body in a spatial way. In this study, research area was set on the abandoned Yangyang iron mine in Korea and the Sugaeng ore body within the mine was selected as the research target to design a mine haulage system for reopening. A 3D mine model of this area was tried to be constructed using a 3D modelling software, GEMS. An accurate 3D model including the ore body, the geological structure, the old underground mine drifts and the new mine drifts was constructed under the purpose of reopening of the abandoned iron mine. Especially, mine design for trackless haulage system was conducted. New inclines and drifts were planned and modelled 3 dimensionally considering the utilization of old drifts and shaft. In addition to the 3D modelling, geostatistical technique was adopted to generate a spatial distribution of the ore grade and the rock physical properties. 3D model would be able to contribute in solving problems such as evaluating ore reserves, planning the mine development and additional explorations and changing the development plans, etc.

A Study on Photographic 3D Modeling Techniques for Their Enhancements (실사적인 3차원 물체 모델링 기법 개선)

  • Lee, Jong-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.157-162
    • /
    • 2003
  • In this paper, in-depth considerations are given to various techniques suggested for photographic 3D modelling and possible enhancements of the techniques are discussed. It is found that both the improvement of fundamental matrix estimation techniques and the stereo image rectification processing stage are necessary for more accurate 3D modelling.

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

Topography Analysis in High Speed Working by Flat Endmill (엔드밀에 의한 고속가공시 표면형상 해석)

  • Bae, H.J.;Lee, S.J.;Seo, Y.B.;Park, H.S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • High speed machining system have been used in industrial because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in aircraft, automobile part and molding industry. Therefore this study proposed to decide best manufacturing cutting condition for surface roughness and rapid manufacturing tune by using computer Image processing system and 3D modelling. Until the 16,000 rpm, the surface roughness is decreased rapidly, but it is not over that. The 22,000 rpm is the spindle speed with the optimum surface in the high speed end-milling. In the case of the feed rate with 2,000 mm/mm and 8,000 mm/mm, the surface roughness is better than 4,000 mm/min and 6,000 mm/min. By using the 3D modelling, it is effectively represented shape characteristics of working surface m high speed end-milling.

  • PDF

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.