• Title/Summary/Keyword: 3-D Curved Surface

Search Result 96, Processing Time 0.027 seconds

Visual Perception of Garment Surface Appearance

  • Fan, Jintu;Liu, Fu
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.1-10
    • /
    • 2002
  • This paper concerns with the relationship between the visual perception of the degree of pucker or wrinkles of garment surfaces and the geometrical parameters of surfaces. In this study, four potentially relevant parameters of the surface profile are considered, namely, the variance ($\sigma$$^2$), the cutting frequency (F$\_$c/), the effective disparity curvature (D$\_$ce/) (Defined as the average disparity curvature of the wrinkled surface over the eyeball distance of the observer) and the frequency component of the disparity curvature ( D$\_$cf/). Based on the experiments using garment seams having varying degree of pucker (i.e. the wrinkles along a seam line), it was found that, while the logarithm of each of these four parameters has a strong linear relationship with the visually perceived degree of wrinkles, following the Web-Fetchner Law, the effective disparity curvature ( D$\_$ce/) and the frequency component of the disparity curvature (D$\_$cf/) appeared to have stronger relationships with the visual perception. This finding is in agreement with the suggestion by Rogers '||'&'||' Cagenello that human visual system may compute the disparity curvature in discriminating curved surfaces. It also suggested an objective method of measuring the degree of surface wrinkles.

  • PDF

Finite Element Analysis of the Robot Roller Hemming (로봇 롤러 헤밍의 유한요소해석)

  • Chu, Seok-Jae;Kang, Min-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.475-480
    • /
    • 2008
  • Hemming, especially curl hemming, is required along the wheel housing for safety. Robot roller hemming is suitable for it. In this paper, both the flat hemming and the curl hemming along either the straight profile or the curved profile are analyzed using finite element program MSC.Marc to verify the hemming test results. Both the inner panel and the outer panel are modeled using 3-D solid elements and the roler is modeled using rigid surface. In the curl hemming, there is a case that the curl is not formed if the pre-hemming force is not sufficient. It agrees with the test results.

  • PDF

Laser Forming of Sheet Metal by Geometrical Information (기하학적 정보를 이용한 이중곡률 형상의 레이저 성형)

  • Kim, Ji-Tae;Na, Seok-Ju
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.91-93
    • /
    • 2005
  • Forming sheet metal by laser-induced thermal stresses (laser forming) has been extensively studied, and the research has focused on two-dimensional geometries using a multi-pass straight line scan. Recently there came out some useful studies or three-dimensional laser forming which is applied to doubly curved shapes. The task of 3D laser forming sheet metal is to determine a set of process parameters such as laser scanning paths, laser power and scanning speed that will make a given shape. New method for laser forming of a doubly curved surface by using geometrical information was proposed and verified by experiments. This method shows good performance in the sense of calculation time and accuracy compared to the inherent strain method.

  • PDF

Free Surface Oscillation in Sloshing Problem Predicted with ALE Method

  • Ushijima Satoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.11-22
    • /
    • 1999
  • A numerical prediction method has been proposed to predict non-linear free surface oscillation in a three-dimensional container. The fluid motions are numerically predicted with Navier-Stokes equations discretized in a Lagrangian scheme with sufficient numerical accuracy. The profile of a free surface is precisely represented with three-dimensional body-fitted coordinates (BFC), which are regenerated in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) formulation. In order to confirm the reliability of the computational method, it was firstly applied to three-dimensional flows within complicated-shaped rigid boundaries, such as curved pipes and ducts. Than it was applied to benchmark computations related to free surface oscillations. Following these basic verifications, non-linear sloshings in a cylindrical tank and transitions from sloshing to swirling motions were numerically predicted. Throughout these computations, the applicability of the present computational method has been confirmed and some of the predicted free surface motions were visualized as sequential images and animations to understand their dynamic futures.

  • PDF

Study of Freeform Buildings using the Digital Fabrication (비정형 건축물 구현을 위한 Digital Fabrication의 활용방법 연구 -롯데월드타워 3D 포디움 시공사례-)

  • Kim, Sung-Jin;Park, Young-Mi;Park, Jung-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.52-53
    • /
    • 2017
  • Through the case study, we surveyed an applicability of digital fabrication in irregular-shaped building construction project. By digital fabrication, we mean is a precision manufacturing method has been used in aircraft, ship and car manufacturing industry. We collected construction-completed "LotteWorld Tower Podium" project data and analyzed its process in terms of construction quality andduration. The result shows that digital fabrication is considered a competitive technology that enabled to complete the project in seven months within 3mm surface curvature threshold. The digitalfabrication is expected to apply on a number of irregular-shaped building construction project.

  • PDF

Dynamic Analysis of Tension Leg Platform Using 3D-Curved Surface Boundary Element Method

  • Pil, Jang-Seung;Park, Jeong-Il;Kim, Jae-Gwan
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.140-145
    • /
    • 1992
  • The design of large offshore structures and their operations depend critically upon the wave-induced loads and motions. Thus, over the last two decades, substantial efforts have been devoted to the development of various principles and methods which can provide these predictions in a reliable and efficient manner.(omitted)

  • PDF

A unified rough and finish cut algorithm for NC machining of free form pockets with general polygon - Part 1. Simulation (일반적인 내벽을 가진 자유바닥 곡면 파켓의 NC 가공을 위한 단일화된 황삭과 정삭 알고리즘 - Part 1. Simulation)

  • Park, Yong-hoon;Cho, Chi-woon;Kim, Sang-jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.7-16
    • /
    • 2004
  • The tool path needs to be determined in an efficient manner to generate the final NC (numerical control) code for efficient machining. This is particularly important in machining free form pockets with an arbitrary wall geometry on a three-axis CNC machine. Many CAD/CAM systems use linear interpolation to generate NC tool paths for curved surfaces. However, this needs to be modified to improve the smoothness of the machined bottom surface, reduce machining time and CL (cutter location) file size. Curved machining can be a solution to reduce these problems. The unified rough and finish cut algerian and the tool motion is graphically simulated. In this paper, a grid based 3D navigation algorithm for generating NC tool path data for both linear interpolation and a combination of linear and circular interpolation for three-axis CNC milling of general pockets with sculptured bottom surfaces is developed.

  • PDF

Fabrication of an Ultralow Density Material Based on Wire-Weaving (와이어 직조에 기반한 극저밀도 재료의 제조법)

  • Choi, Jung Myung;Gang, Liu;Kang, Kiju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.737-744
    • /
    • 2017
  • A new ultralow density material (ULDM) named Shellular was recently introduced. Shellular has a periodic cellular structure with smooth-curved shells. The template for the first Shellular was fabricated using lithography and its shape was similar to the P-surface, a type of triply periodic minimal surface (TPMS). In this paper, a new fabrication method of Shellular with D-surface, named W-Shellular, is described. W-Shellular is fabricated based on weaving of polymer wires. The compressive properties are evaluated by experiments and analysis in comparison with the previous ULDMs.

Analytic and Discrete Fairing of 3D NURBS Curves (3D NURBS 곡선의 해석적 및 이산적 순정)

  • 홍충성;홍석용;이현찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.127-138
    • /
    • 1999
  • For reverse engineering, curves and surfaces are modeled for new products by interpolating the digitized data points. But there are many measuring or deviation errors. Therefore, it is important to handle errors during the curve or surface modeling. If the errors are ignored, designer could get undesirable results. For this reason, fairing procedure with the aesthetics criteria is necessary in computer modeling. This paper presents methods of 3D NURBS curve fairing. The techniques are based on automatic repositioning of the digitized dat points or the NURBS curve control points by a constrained nonlinear optimization algorithm. The objective function is derived variously by derived curved. Constraints are distance measures between the original and the modified digitized data points. Changes I curve shape are analyzed by illustrations of curve shapes, and continuous plotting of curvature and torsion.

  • PDF

Belt Pattern Making for Hip-hugger garment using 3D Body Scan Data (3차원 인체 스캔 데이터를 활용한 Hip-hugger 의류용 벨트 패턴 설계)

  • Park, Soon-Jee;Choi, Sin-Ae
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 2008
  • This study was designed to testify the possibility and devise the method to manipulate the 3D body scan data to produce rounded-belt pattern adaptable to hip-type variation of women in their 20's. The results of this research were as follows : Firstly, based on drop-value distribution of hip and waist girth, 151 subjects were classified into three hip-types; Type 1 (15.23%) was 'cylinder type', showing lowest drop-value, Type 2 (69.54%) was 'average type' and Type3 (15.23%) was 'hourglass type' showing highest drop-value. Secondly, using CAD program, design lines for round shape belt were set on the surface of 3D scan data of representative subject of each type. And divided 3D surfaces were flattened onto the plane by the internal tools of CAD program. The measure, 'lifting value of round belt pattern', implying the level of curve ratio of pattern was higher in back than front. This result might be linked to the fact that the hip part is more protruded than the abdomen part. And the measures also showed highest values in Type 3(hourglass type) and lowest in Type 1(cylinder type), meaning that the pattern of Type 3 showed more rounded shape than that of Type 1. This finding implied that round belt for body type having high drop-value should be shaped more curved. Thirdly, difference ratios of outline length and area between 3D curves(body surface) and 2D plane(pattern) were 4.5% and 1.3%, respectively. This result demonstrated and solidified the feasibility of designing digital garment pattern from 3D body scan data.